Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38398913

RESUMEN

Impedance spectroscopy provides relevant knowledge on the recombination and extraction of photogenerated charge carriers in various types of photovoltaic devices. In particular, this method is of great benefit to the study of crystalline silicon (c-Si)-based solar cells, a market-dominating commercial technology, for example, in terms of the comparison of various types of c-Si devices. This study investigates the dark and light electrophysical characteristics of a heterojunction silicon solar cell fabricated using plasma-enhanced chemical vapor deposition. The measurements are performed at various applied biases, enabling the determination of complex resistance, characteristic time, capacitive response and impurity concentration within the semiconductor junction and to correlate them with the device performance. In addition, the impedance spectra of the studied cell were investigated as a function of temperature. Studies of the frequency and temperature dependences of capacitance do not reveal a significant presence of thermally activated centers of free carrier capture, concomitant with a very small value of the activation energy extracted from an Arrhenius-type analysis. This leads to a conclusion that these centers are likely not impactful on the device operation and efficiency.

2.
Sci Rep ; 13(1): 21155, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036724

RESUMEN

This paper presents a cryovacuum setup for the study of substances under near-space conditions. The setup makes it possible to study the infrared spectra, refractive index, and density of substances that are condensed from the vapor phase onto a cooled substrate in the temperature range from 11 to 300 K. At the same time, it is possible to obtain the ultimate pressure of 1 × 10-10 Torr in the vacuum chamber. The presented setup is based on FTIR spectroscopy (the spectral measurement range is 400-7800 cm-1) and laser interference, through which the important physical and optical parameters are determined. A number of experiments allow us to point out that the data obtained using this setup correlate well with the experiments of other authors. Due to the non-directional deposition of substances from the vapor phase, the ice formed resembles the one formed under cosmic conditions as closely as possible, which makes the presented setup particularly valuable. The presented cryovacuum setup can be used for the interpretation of data obtained during astrophysical observations, providing a means to determine the properties of cosmic objects.

3.
ACS Omega ; 8(22): 19567-19574, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305244

RESUMEN

This paper presents the results obtained in the study of structural phase transitions in thin films of R134A. The samples were condensed on a substrate by physical deposition of R134A molecules from the gas phase. Structural phase transformations in samples were investigated by observing the changes in characteristic frequencies of Freon molecules in the mid-infrared range with the help of Fourier-transform infrared spectroscopy. The experiments were carried out in the temperature range from 12 to 90 K. A number of structural phase states, including glassy forms, were detected. The changes in thermogram curves at fixed frequencies of half-widths of absorption bands of R134A molecules were revealed. These changes indicate a large bathochromic shift of these bands at frequencies of ν = 842 cm-1, ν = 965 cm-1, and ν = 958 cm-1 and a hypsochromic shift of the bands at frequencies of ν = 1055 cm-1, ν = 1170 cm-1, and ν = 1280 cm-1 at temperatures from T = 80 K to T = 84 K. These shifts are related to the structural phase transformations in the samples.

4.
Molecules ; 28(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770955

RESUMEN

The advantages of IR spectroscopy include relatively fast analysis and sensitivity, which facilitate its wide application in the pharmaceutical, chemical and polymer sectors. Thus, IR spectroscopy provides an excellent opportunity to monitor the degradation and concomitant evolution of the molecular structure within a perovskite layer. As is well-known, one of the main limitations preventing the industrialization of perovskite solar cells is the relatively low resistance to various degradation factors. The aim of this work was to study the degradation of the surface of a perovskite thin film CH3NH3PbI3-xClx caused by atmosphere and light. To study the surface of CH3NH3PbI3-xClx, a scanning electron microscope, infrared (IR) spectroscopy and optical absorption were used. It is shown that the degradation of the functional layer of perovskite proceeds differently depending on the acting factor present in the surrounding atmosphere, whilst the chemical bonds are maintained within the perovskite crystal structure under nitrogen. However, when exposed to an ambient atmosphere, an expansion of the NH3+ band is observed, which is accompanied by a shift in the N-H stretching mode toward higher frequencies; this can be explained by the degradation of the perovskite surface due to hydration. This paper shows that the dissociation of H2O molecules under the influence of sunlight can adversely affect the efficiency and stability of the absorbing layer. This work presents an approach to the study of perovskite structural stability with the aim of developing alternative concepts to the fabrication of stable and sustainable perovskite solar cells.

5.
ACS Omega ; 7(50): 46402-46410, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570311

RESUMEN

Methanol plays an important role in studying the structure and dynamics of hydrogen bonds in alcohols and other physiologically important compounds in the condensed state. The physical vapor deposition method and two-beam interferometry make it possible to study the structure of polyatomic molecules, the nature and character of intermolecular interactions, and the internal structure of various compounds. Thus, it becomes possible to analyze changes in the internal structure of substances near the points of their phase transitions and glass transitions at ultralow temperatures. In this work, we have studied the effect of nitrogen and nitrous oxide on the dependence of refractive indices of methanol on temperature and on structural-phase transformations upon heating from 16 to 160 K.

6.
Materials (Basel) ; 15(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36363035

RESUMEN

The interaction of host molecules with water molecules is of primary importance in astrophysical and atmospheric studies. Water-binding interactions continue to attract a broad interest in various fields, especially those related to the formation of assembly structures. Using the physical vapor deposition (PVD) method and a two-beam interferometer with a wavelength of 406 nm, the refractive indices of thin films of a water and nitrogen (argon) mixture were calculated in the range from 15 to 35 K. The results of temperature transformations of the obtained films from a two-beam interferometer, and thermal desorption characteristics from the temperature of condensation to the temperature of evaporation of water (15-180 K), are presented. The relationship between the signal of the interferometer, the refractive index, and the film thickness during glass transition is demonstrated.

7.
Polymers (Basel) ; 13(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34372098

RESUMEN

One of the important aspects for degradation of the life quality is the ever increasing volume and range of industrial wastes. Polymer wastes, such as automotive tire rubber, are a source of long-term environmental pollution. This paper presents an approach to simplifying the rubber waste recycling process using cryogenic temperatures. The temperature of cryogenic treatment is ranged from 77 K to 280 K. Liquid nitrogen was used as a cryoagent for laboratory tests. Experimental and numerical studies have been carried out to determine the optimal conditions for the recycling process. Numerical studies were performed using the COMSOL Multiphysics cross-platform software. The optimal force of mechanical shock for the destruction of a tire which turned into a glassy state after cryoexposure was determined experimentally. The chemical and physical properties of the final product (crumb rubber) have been studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis shows that the morphology and elemental composition of the samples remain practically unchanged, demonstrating environmental friendliness of the proposed process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA