Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 162: 340-349, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940494

RESUMEN

With the development of social economy and smart technology, the explosive growth of vehicles has caused traffic forecasting to become a daunting challenge, especially for smart cities. Recent methods exploit graph spatial-temporal characteristics, including constructing the shared patterns of traffic data, and modeling the topological space of traffic data. However, existing methods fail to consider the spatial position information and only utilize little spatial neighborhood information. To tackle above limitation, we design a Graph Spatial-Temporal Position Recurrent Network (GSTPRN) architecture for traffic forecasting. We first construct a position graph convolution module based on self-attention and calculate the dependence strengths among the nodes to capture the spatial dependence relationship. Next, we develop approximate personalized propagation that extends the propagation range of spatial dimension information to obtain more spatial neighborhood information. Finally, we systematically integrate the position graph convolution, approximate personalized propagation and adaptive graph learning into a recurrent network (i.e. Gated Recurrent Units). Experimental evaluation on two benchmark traffic datasets demonstrates that GSTPRN is superior to the state-of-art methods.


Asunto(s)
Benchmarking , Aprendizaje , Análisis Espacial
2.
IEEE J Biomed Health Inform ; 22(5): 1421-1433, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990245

RESUMEN

Availability and all-in-one functionality of smartphones have become a multipurpose personal tool to improve our daily life. Recent advancements in hardware and accessibility of smartphones have spawn huge potential for assistive healthcare, in particular telerehabilitation. However, using smartphone sensors face certain challenges, in particular, accurate orientation estimation, which is usually less of a problem in specialized motion tracking sensor devices. Drift is one of the challenges. We first propose a simple feedback loop complementary filter (CFF) to reduce the error caused by the integration of the gyroscope's data in the orientation estimation. Next, we propose a new and better orientation estimation algorithm which combines quaternion-based kalman filter with corrector estimates using gradient descent (KFGD). We then evaluate CFF's and KFGD's performance on two early-stage rehabilitation exercises. The results show that CFF is capable of fast motion tracking and confirm that the feedback loop can correct the error caused by the integration of gyroscope data. The KFGD orientation estimation is comparable to XSENS Awinda and has shown itself to be stable than and outperforms CFF. KFGD also outperforms the prominent Madgwick algorithm using mobile data. Thus, KFGD is suitable for low-cost motion sensors or mobile inertial sensors, especially during early recovery stage of sport injuries and exercise for the elderly.


Asunto(s)
Acelerometría/instrumentación , Algoritmos , Procesamiento de Señales Asistido por Computador/instrumentación , Teléfono Inteligente , Humanos , Movimiento/fisiología , Rehabilitación/instrumentación , Dispositivos de Autoayuda , Dispositivos Electrónicos Vestibles
3.
PLoS One ; 12(8): e0182487, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28793347

RESUMEN

Detection techniques of malicious content such as spam and phishing on Online Social Networks (OSN) are common with little attention paid to other types of low-quality content which actually impacts users' content browsing experience most. The aim of our work is to detect low-quality content from the users' perspective in real time. To define low-quality content comprehensibly, Expectation Maximization (EM) algorithm is first used to coarsely classify low-quality tweets into four categories. Based on this preliminary study, a survey is carefully designed to gather users' opinions on different categories of low-quality content. Both direct and indirect features including newly proposed features are identified to characterize all types of low-quality content. We then further combine word level analysis with the identified features and build a keyword blacklist dictionary to improve the detection performance. We manually label an extensive Twitter dataset of 100,000 tweets and perform low-quality content detection in real time based on the characterized significant features and word level analysis. The results of our research show that our method has a high accuracy of 0.9711 and a good F1 of 0.8379 based on a random forest classifier with real time performance in the detection of low-quality content in tweets. Our work therefore achieves a positive impact in improving user experience in browsing social media content.


Asunto(s)
Medios de Comunicación Sociales/estadística & datos numéricos , Adolescente , Adulto , Algoritmos , Femenino , Humanos , Masculino , Medios de Comunicación Sociales/normas , Encuestas y Cuestionarios , Adulto Joven
4.
IEEE Trans Biomed Eng ; 62(7): 1843-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25706505

RESUMEN

From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.


Asunto(s)
Astrocitos/fisiología , Modelos Neurológicos , Células Receptoras Sensoriales/fisiología , Señalización del Calcio , Biología Computacional , Humanos , Red Nerviosa/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA