Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 15(3): 347-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26916116

RESUMEN

The mTOR pathway is a critical regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling has been observed in most cancers and, thus, the mTOR pathway has been extensively studied for therapeutic intervention. Rapamycin is a natural product that inhibits mTOR with high specificity. However, its efficacy varies by dose in several contexts. First, different doses of rapamycin are needed to suppress mTOR in different cell lines; second, different doses of rapamycin are needed to suppress the phosphorylation of different mTOR substrates; and third, there is a differential sensitivity of the two mTOR complexes mTORC1 and mTORC2 to rapamycin. Intriguingly, the enigmatic properties of rapamycin dosage can be explained in large part by the competition between rapamycin and phosphatidic acid (PA) for mTOR. Rapamycin and PA have opposite effects on mTOR whereby rapamycin destabilizes and PA stabilizes both mTOR complexes. In this review, we discuss the properties of rapamycin dosage in the context of anticancer therapeutics.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Sirolimus/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo
2.
Cancer Cell ; 27(1): 109-22, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25544636

RESUMEN

In PTEN-mutated tumors, we show that PI3Kα activity is suppressed and PI3K signaling is driven by PI3Kß. A selective inhibitor of PI3Kß inhibits the Akt/mTOR pathway in these tumors but not in those driven by receptor tyrosine kinases. However, inhibition of PI3Kß only transiently inhibits Akt/mTOR signaling because it relieves feedback inhibition of IGF1R and other receptors and thus causes activation of PI3Kα and a rebound in downstream signaling. This rebound is suppressed and tumor growth inhibition enhanced with combined inhibition of PI3Kα and PI3Kß. In PTEN-deficient models of prostate cancer, this effective inhibition of PI3K causes marked activation of androgen receptor activity. Combined inhibition of both PI3K isoforms and androgen receptor results in major tumor regressions.


Asunto(s)
Compuestos de Anilina/farmacología , Cromonas/farmacología , Neoplasias/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
3.
Cancer Lett ; 353(2): 258-63, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25086185

RESUMEN

Cancer cells with constitutive phosphatidylinositol 3-kinase (PI3K)/Akt pathway activation have been associated with overexpression of the lipogenic enzyme fatty acid synthase (FAS) as a means to provide lipids necessary for cell growth. In contrast, K-Ras-driven cancer cells suppress utilization of de novo synthesized fatty acids and rely on exogenously supplied fatty acids for cell growth and membrane phospholipid biosynthesis. Consistent with a differential need for de novo fatty acid synthesis, cancer cells with activated PI3K signaling were sensitive to suppression of FAS; whereas mutant K-Ras-driven cancer cells continued to proliferate with suppressed FAS. Surprisingly, in response to FAS suppression, we observed robust increases in both Akt and ERK phosphorylation. Akt phosphorylation was dependent on the insulin-like growth factor-1 receptor (IGF-1R)/PI3K pathway and mTOR complex 2. Intriguingly, K-Ras-mediated ERK activation was dependent on N-Ras. Pharmacological inhibition of PI3K and MEK in K-Ras-driven cancer cells resulted in increased sensitivity to FAS inhibition. These data reveal a surprising sensitivity of K-Ras-driven cancer cells to FAS suppression when stimulation of Akt and ERK was prevented. As K-Ras-driven cancers are notoriously difficult to treat, these findings have therapeutic implications.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Cerulenina/farmacología , Cromonas/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Activación Enzimática , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Lipogénesis , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas p21(ras)
4.
Cancer Lett ; 333(2): 239-43, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23376634

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent translation through its direct activation of ribosomal protein p70 S6 kinase (S6 kinase) and indirect activation of eukaryotic initiation factor 4E (eIF4E). We recently reported that inhibition of eIF4E expression caused apoptosis in cancer cells in the absence of serum. This was indicated by treatment with the mTORC1 inhibitor rapamycin, which suppressed both S6 kinase and 4E-BP1 phosphorylation (dephosphorylated 4E-BP1 binds and inactivates eIF4E), or by knockdown of eIF4E. We report here that knockdown of eIF4E also causes apoptosis in the presence of serum. This was unexpected because rapamycin induces G1 cell cycle arrest in the presence of serum. Upon investigation, we have found that inactivated S6 kinase prevents the apoptotic effect observed by singular knockdown of eIF4E and results in G1 cell cycle arrest. This effect is dependent on TGF-ß (transforming growth factor-ß) signaling which contributes to G1 cell cycle arrest. Suppression of S6 kinase phosphorylation alone is insufficient to mediate cell cycle arrest, indicating that complete G1 cell cycle arrest is due to suppression of both S6 kinase and eIF4E. These data indicate that the cytostatic effect of rapamycin is suppression of both S6 kinase and eIF4E, while the cytotoxic effects are due suppression of eIF4E in the absence of S6 kinase-dependent activation of TGF-ß signals. Our findings place an importance on the evaluating the activity/expression level of S6 kinase and eIF4E as readouts for rapamycin/rapalog efficacy.


Asunto(s)
Apoptosis/fisiología , Factor 4E Eucariótico de Iniciación/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Sirolimus/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Factor 4E Eucariótico de Iniciación/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Suero
5.
Cell Cycle ; 10(22): 3948-56, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22071574

RESUMEN

mTOR, the mammalian target of rapamycin, has been widely implicated in signals that promote cell cycle progression and survival in cancer cells. Rapamycin, which inhibits mTOR with high specificity, has consequently attracted much attention as an anti-cancer therapeutic. Rapamycin suppresses phosphorylation of S6 kinase at nano-molar concentrations, however at higher micro-molar doses, rapamycin induces apoptosis in several human cancer cell lines. While much is known about the effect of low dose rapamycin treatment, the mechanistic basis for the apoptotic effects of high-dose rapamycin treatment is not understood. We report here that the apoptotic effects of high-dose rapamycin treatment correlate with suppressing phosphorylation of the mTOR complex 1 substrate, eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). Consistent with this observation, ablation of eIF4E also resulted in apoptorsis in MDA-MB 231 breast cancer cells. We also provide evidence that the differential dose effects of rapamycin are correlated with partial and complete dissociation of Raptor from mTORC1 at low and high doses, respectively. In contrast with MDA-MB-231 cells, MCF-7 breast cancer cells survived rapamycin-induced suppression of 4E-BP1 phosphorylation. We show that survival correlated with a hyper-phosphorylation of Akt at S473 at high rapamycin doses, the suppression of which conferred rapamycin sensitivity. This study reveals that the apoptotic effect of rapamycin requires doses that completely dissociate Raptor from mTORC1 and suppress that phosphorylation of 4E-BP1 and inhibit eIF4E.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Fosfoproteínas/metabolismo , Proteínas/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/fisiología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR/metabolismo
6.
J Biol Chem ; 286(29): 25477-86, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21622984

RESUMEN

The mammalian target of rapamycin (mTOR) is a critical sensor of nutritional sufficiency. Although much is known about the regulation of mTOR in response to growth factors, much less is known about the regulation of mTOR in response to nutrients. Amino acids have no impact on the signals that regulate Rheb, a GTPase required for the activation of mTOR complex 1 (mTORC1). Phospholipase D (PLD) generates a metabolite, phosphatidic acid, that facilitates association between mTOR and the mTORC1 co-factor Raptor. We report here that elevated PLD activity in human cancer cells is dependent on both amino acids and glucose and that amino acid- and glucose-induced increases in mTORC1 activity are dependent on PLD. Amino acid- and glucose-induced PLD and mTORC1 activity were also dependent on the GTPases RalA and ARF6 and the type III phosphatidylinositol-3-kinase hVps34. Thus, a key stimulatory event for mTORC1 activation in response to nutrients is the generation of phosphatidic acid by PLD.


Asunto(s)
Alimentos , Fosfolipasa D/metabolismo , Proteínas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Aminoácidos/farmacología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Glucosa/farmacología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Neuropéptidos/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR , Proteínas de Unión al GTP ral/metabolismo
7.
Cancer Lett ; 299(1): 72-9, 2010 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-20805015

RESUMEN

A characteristic of cancer cells is the generation of lactate from glucose in spite of adequate oxygen for oxidative phosphorylation. This property - known as the "Warburg effect" or aerobic glycolysis - contrasts with anaerobic glycolysis, which is triggered in hypoxic normal cells. The Warburg effect is thought to provide a means for cancer cells to survive under conditions where oxygen is limited and to generate metabolites necessary for cell growth. The shift from oxidative phosphorylation to glycolysis in response to hypoxia is mediated by the production of hypoxia-inducible factor (HIF) - a transcription factor family that stimulates the expression of proteins involved in glucose uptake and glycolysis. We reported previously that elevated phospholipase D (PLD) activity in renal and breast cancer cells is required for the expression of the α subunits of HIF1 and HIF2. We report here that the aerobic glycolysis observed in human breast and renal cancer cells is dependent on the elevated PLD activity. Intriguingly, the effect of PLD on the Warburg phenotype was dependent on the mammalian target of rapamycin complex 1 (mTORC1) in the breast cancer cells and on mTORC2 in the renal cancer cells. These data indicate that elevated PLD-mTOR signaling, which is common in human cancer cells, is critical for the metabolic shift to aerobic glycolysis.


Asunto(s)
Glucosa/metabolismo , Glucólisis , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neoplasias/metabolismo , Fosfolipasa D/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Línea Celular Tumoral , Proteínas Facilitadoras del Transporte de la Glucosa/análisis , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación Oxidativa , Fosfolipasa D/antagonistas & inhibidores , Proteínas , Serina-Treonina Quinasas TOR , Factores de Transcripción/fisiología
8.
Genes Cancer ; 1(11): 1124-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21779436

RESUMEN

Most genetic changes that promote tumorigenesis involve dysregulation of G1 cell cycle progression. A key regulatory site in G1 is a growth factor-dependent restriction point (R) where cells commit to mitosis. In addition to the growth factor-dependent "R," which maps to a site about 3.5 hours after mitosis, there is another checkpoint later in G1 that is dependent on nutritional sufficiency that has also been referred to as R. However, this second site in late G1 can be distinguished both temporally and genetically from R. We are proposing that the late G1 regulatory site be more appropriately referred to as a "cell growth" checkpoint to distinguish it from R. This checkpoint, which likely has an evolutionary relationship to the yeast cell cycle checkpoint START, is regulated by signals governed by mTOR, the mammalian target of rapamycin. This review summarizes evidence that distinguishes R from the proposed cell growth checkpoint. Since both checkpoints are dysregulated in most, if not all, human cancers, distinguishing between these 2 distinct G1 regulatory checkpoints has significance for rational therapeutic strategies targeting oncogenic signals.

9.
Biomaterials ; 26(13): 1585-93, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15522760

RESUMEN

We have developed a crosslinked hyaluronic acid (HA) film with DNA incorporated within its structure and have characterized this system for its efficacy in sustained transferring of a vector encoding mouse hyaluronan synthase 2 (Has2). Analysis of the DNA release kinetics indicated that the HA films degraded when treated with hyaluronidase and that they released DNA over a prolonged period of time. Gel electrophoresis revealed that this DNA was intact and immunohistochemical analysis verified the transfection capabilities of DNA release samples. The ability of released DNA encoding Has2 to promote HA synthesis was confirmed by quantifying the amount of HA produced by COS-1 cells that were transfected with release samples. The intended future application of the HA films is in prevention of post-operative peritoneal adhesions. In addition to serving as a physical barrier, the film would function as a vehicle for sustained delivery of DNA encoding Has2, which would promote the synthesis of HA in transfected tissues.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Glucuronosiltransferasa/biosíntesis , Glucuronosiltransferasa/genética , Ácido Hialurónico/química , Plásmidos/administración & dosificación , Plásmidos/farmacocinética , Transfección/métodos , Implantes Absorbibles , Animales , Células COS , Chlorocebus aethiops , Materiales Biocompatibles Revestidos/química , Reactivos de Enlaces Cruzados , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Glucuronosiltransferasa/administración & dosificación , Hialuronano Sintasas , Ensayo de Materiales , Plásmidos/genética
10.
Biomaterials ; 25(1): 147-57, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14580918

RESUMEN

Hyaluronan is a naturally occurring polymer that has enjoyed wide successes in biomedical and cosmetic applications as coatings, matrices, and hydrogels. For controlled delivery applications, formulating native hyaluronan into microspheres could be advantageous but has been difficult to process unless organic solvents are used or hyaluronan has been modified by etherification. Therefore, we present a novel method of preparing hyaluronan microspheres using adipic dihydrazide mediated crosslinking chemistry. To evaluate their potential for medical applications, hyaluronan microspheres are incorporated with DNA for gene delivery or conjugated with an antigen for cell-specific targeting. The results show that our method, originally developed for preparing hyaluronan hydrogels, generates robust microspheres with a size distribution of 5-20mum. The release of the encapsulated plasmid DNA can be sustained for months and is capable of transfection in vitro and in vivo. Hyaluronan microspheres, conjugated with monoclonal antibodies to E- and P-selectin, demonstrate selective binding to cells expressing these receptors. In conclusion, we have developed a novel microsphere preparation using native hyaluronan that delivers DNA at a controlled rate and adaptable for site-specific targeting.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Preparaciones de Acción Retardada/química , Marcación de Gen/métodos , Ácido Hialurónico/química , Plásmidos/administración & dosificación , Transfección/métodos , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Adhesión Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/farmacocinética , Preparaciones de Acción Retardada/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Humanos , Ácido Hialurónico/farmacocinética , Sustancias Macromoleculares , Ensayo de Materiales , Microesferas , Conformación Molecular , Tamaño de la Partícula , Plásmidos/química , Ratas/genética , Propiedades de Superficie , Venas Umbilicales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA