Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007857

RESUMEN

Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.


Asunto(s)
Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Unión Proteica , Simulación del Acoplamiento Molecular , Microscopía por Crioelectrón , Núcleo Celular/metabolismo , Núcleo Celular/genética
2.
Nat Commun ; 14(1): 5946, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741869

RESUMEN

Vibrio α-hemolysins (αHLs) are ß-pore-forming toxins secreted by Vibrio pathogens, crucial for the facilitation of bacterial infections through host cell lysis. These toxins are produced as inactive precursors, requiring proteolytic maturation and membrane association for activation within host tissues. Here, we investigate Vibrio campbellii αHL (VcαHL), and establish that its hemolytic activity is significantly stimulated by calcium ions, with an EC50 that aligns with physiological calcium concentrations. Furthermore, we illustrate the vital contribution of calcium ions to the oligomerization of VcαHL on membranes. Using X-ray crystallography and cryo-electron microscopy, we decipher both the immature and assembled structures of VcαHL and elucidate the conformational changes corresponding to toxin assembly. We also identify a calcium-binding module that is integral for VcαHL's calcium-dependent activation. These findings provide insights into the regulatory mechanisms of VcαHL and have the potential to inform the development of targeted therapeutic strategies against Vibrio infections.


Asunto(s)
Toxinas Bacterianas , Proteínas Hemolisinas , Proteínas Hemolisinas/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo , Toxinas Bacterianas/metabolismo , Microscopía por Crioelectrón , Iones/metabolismo
3.
Nat Commun ; 14(1): 4993, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591853

RESUMEN

ATP-dependent RAD51 recombinases play an essential role in eukaryotic homologous recombination by catalyzing a four-step process: 1) formation of a RAD51 single-filament assembly on ssDNA in the presence of ATP, 2) complementary DNA strand-exchange, 3) ATP hydrolysis transforming the RAD51 filament into an ADP-bound disassembly-competent state, and 4) RAD51 disassembly to provide access for DNA repairing enzymes. Of these steps, filament dynamics between the ATP- and ADP-bound states, and the RAD51 disassembly mechanism, are poorly understood due to the lack of near-atomic-resolution information of the ADP-bound RAD51-DNA filament structure. We report the cryo-EM structure of ADP-bound RAD51-DNA filaments at 3.1 Å resolution, revealing a unique RAD51 double-filament that wraps around ssDNA. Structural analysis, supported by ATP-chase and time-resolved cryo-EM experiments, reveals a collapsing mechanism involving two four-protomer movements along ssDNA for mechanical transition between RAD51 single- and double-filament without RAD51 dissociation. This mechanism enables elastic change of RAD51 filament length during structural transitions between ATP- and ADP-states.


Asunto(s)
Citoesqueleto , ADN de Cadena Simple , Subunidades de Proteína , ADN Complementario , Recombinación Homóloga , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA