Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 393: 130052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995875

RESUMEN

Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 âˆ¼ 10 µm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.


Asunto(s)
Microalgas , Técnicas de Cocultivo , Biomasa , Propiedades de Superficie , Biopelículas
2.
Chemosphere ; 349: 140805, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040255

RESUMEN

Using microalgae to treat coking wastewater has important application prospects and environmental significance. Previous studies have suggested that phycoremediation of pollutants from coking wastewater is feasible and can potentially enhance biodiesel production. This work investigates the effects of phenol in coking wastewater on C. pyrenoidosa and S. obliquus growth, photosynthesis activity, and intracellular components. The results indicated that when the phenol concentration was lower than 300 mg L-1, both microalgae maintained good photosynthetic and physiological activity, with a maximum quantum yield potential ranging from 0.6 to 0.7. At the phenol concentration of 300 mg L-1, the biomass of C. pyrenoidosa was 2.4 times that of the control group. For S. obliquus, at the phenol concentration of 150 mg L-1, the biomass was approximately 0.85 g L-1, which increased by 68% than that of the control group (0.58 g L-1). The lipid content in both microalgae increased with the phenol concentrations, with the maximum content exceeding 40%. The optimal phenol concentrations for C. pyrenoidosa and S. obliquus growth were determined to be 246.18 and 152.73 mg L-1, respectively, based on a developed kinetic model. This work contributes to further elucidating the effects of phenol on microalgae growth, photosynthesis, and intracellular components, and suggests that using microalgae to treat phenol-containing coking wastewater for producing biofuel is not only environmentally friendly but also holds significant energy promise.


Asunto(s)
Chlorella , Coque , Microalgas , Aguas Residuales , Biocombustibles , Fenol , Fenoles , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA