Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21909, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300160

RESUMEN

This study aims to analyze the vibration signals near the ground surface due to the underneath drilling and blasting activities in a fissured rock tunnel. Blasting induced vibration on the ground surface was continuously monitored in a fissured rock tunnel drilling and blasting excavation project in field. Wavelet packet analysis of the vibration signals using Matlab was carried out for signal denoising, differential blasting delay time interval identification, and three-way time-frequency energy analysis. The results show that within a 30 m range from the palm face, the dominant frequency bands of blasting-induced vibrations on the ground surface were concentrated in the range of 0-130 Hz. Two prominent peak frequency bands were identified at 31.25-39.063 Hz (low-frequency band) and 93.75-101.56 Hz (high-frequency band), accounting for 12% of the total energy. Among the three directions of ground surface vibrations, the energy decay was the most significant in the x-direction (tunnel excavation direction), which amounted to 54.29% of the overall energy decay with increasing distance. The energy decay within the 50-80 Hz range was the most pronounced (more than 90%), when the angle between the vibration propagation direction and the fissure or joint direction was 75°. The conclusions provide the insights in the attenuation of blast-induced vibrations in fissured rock and can potentially assist in the design of blasting vibration control.

2.
Waste Manag ; 185: 43-54, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820783

RESUMEN

Plastics within municipal solid waste (MSW) are non-degradable. As MSW continues to degrade, the relative content of plastics rises, and particle gradation may also change. Moreover, throughout the landfilling process, MSW is subjected to various stress conditions, potentially influencing its mechanical properties. This study explored the effects of varying plastic contents, different particle gradations, and distinct stress paths on the mechanical properties of MSW, and consolidated drained triaxial tests of 42 groups of reconstituted MSW specimens were conducted. The results showed that there was an optimal plastic content of 6-9 % for MSW, where the shear strength of MSW was higher than that of MSW with other plastic contents. When the stress path changed from TC45 to TC72, the optimal plastic content of MSW changed from 6 % to 9 %. As the plastic content increased, both the cohesion and internal friction angle of the MSW initially increased, then subsequently decreased. The impact of plastic content on cohesion was more pronounced than on the internal friction angle, especially at larger strains. Under various stress paths, MSW with distinct particle size distributions demonstrated diverse stress-strain behaviors. Traditional criteria for evaluating well-graded conditions in soils are not suitable for MSW. The effect of gradation on the cohesion of MSW is essentially due to the predominant role of fiber content; the relationship between gradation and the internal friction angle in MSW is complex and correlates closely with the content of both coarse and fine particles, as well as fibers. This study serves as an essential reference for predicting deformations in landfills and analyzing the stability of landfill slopes.


Asunto(s)
Plásticos , Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Estrés Mecánico , Tamaño de la Partícula , Resistencia al Corte , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA