Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(1): ar9, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938925

RESUMEN

The HIV-1 accessory protein Nef hijacks clathrin adaptors to degrade or mislocalize host proteins involved in antiviral defenses. Here, using quantitative live-cell microscopy in genome-edited Jurkat cells, we investigate the impact of Nef on clathrin-mediated endocytosis (CME), a major pathway for membrane protein internalization in mammalian cells. Nef is recruited to CME sites on the plasma membrane, and this recruitment is associated with an increase in the recruitment and lifetime of the CME coat protein AP-2 and the late-arriving CME protein dynamin2. Furthermore, we find that CME sites that recruit Nef are more likely to recruit dynamin2 and transferrin, suggesting that Nef recruitment to CME sites promotes site maturation to ensure high efficiency in host protein downregulation. Implications of these observations for HIV-1 infection are discussed.


Asunto(s)
Clatrina , Endocitosis , VIH-1 , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Animales , Humanos , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , VIH-1/metabolismo , Células Jurkat , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
2.
J Cell Biol ; 217(9): 3007-3017, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29899040

RESUMEN

Chromosome congression, the process of positioning chromosomes in the midspindle, promotes the stable transmission of the genome to daughter cells during cell division. Congression is typically facilitated by DNA-associated, microtubule (MT) plus end-directed motors called chromokinesins. The Drosophila melanogaster chromokinesin NOD contributes to congression, but the means by which it does so are unknown in large part because NOD has been classified as a nonmotile, orphan kinesin. It has been postulated that NOD promotes congression, not by conventional plus end-directed motility, but by harnessing polymerization forces by end-tracking on growing MT plus ends via a mechanism that is also uncertain. Here, for the first time, it is demonstrated that NOD possesses MT plus end-directed motility. Furthermore, NOD directly binds EB1 through unconventional EB1-interaction motifs that are similar to a newly characterized MT tip localization sequence. We propose NOD produces congression forces by MT plus end-directed motility and tip-tracking on polymerizing MT plus ends via association with EB1.


Asunto(s)
División Celular/fisiología , Posicionamiento de Cromosoma/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas/genética , Microtúbulos/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/genética
3.
Methods Cell Biol ; 144: 165-184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29804669

RESUMEN

Productive chromosome movements require that a large multiprotein complex called the kinetochore assemble on sister centromeres. The kinetochore fulfills two critical functions as (1) the physical linkage between chromosomes and spindle microtubules and (2) a mechanomolecular sensor that relays a spindle assembly checkpoint signal delaying anaphase onset until chromosomes are attached to spindle microtubules and bioriented. Given its central roles in such a vital process, the kinetochore is one of the most important force-transducing structures in cells; yet it has been technically challenging to measure kinetochore forces. Barriers to measuring cellular forces have begun to be broken by the development of fluorescence-based tension sensors. In this chapter, two methods will be described for measuring kinetochore forces in living cells and strategies for applying these sensors to other force-transducing processes and molecules will be discussed.


Asunto(s)
Técnicas Citológicas/métodos , Mitosis , Animales , Fenómenos Biomecánicos , Técnicas Biosensibles , Drosophila/citología , Transferencia Resonante de Energía de Fluorescencia , Fotoblanqueo , Talina/metabolismo , Vinculina/metabolismo
4.
Nat Commun ; 7: 13221, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762268

RESUMEN

High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore-microtubule (kt-MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1-2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores.


Asunto(s)
Segregación Cromosómica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Polos del Huso/metabolismo , Animales , División Celular , Proteínas Cromosómicas no Histona/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Modelos Biológicos , Estrés Mecánico
5.
Biol Bull ; 231(1): 61-72, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27638695

RESUMEN

During cytokinesis, aurora B kinase (ABK) relocalizes from centromeres to the spindle midzone, where it is thought to provide a spatial cue for cytokinesis. While global ABK inhibition in Drosophila S2 cells results in macro- and multi-nucleated large cells, mislocalization of midzone ABK (mABK) by depletion of Subito (Drosophila MKLP2) does not cause notable cytokinesis defects. Subito depletion was, therefore, used to investigate the contribution of other molecules and redundant pathways to cytokinesis in the absence of mABK. Inhibiting potential polar relaxation pathways via removal of centrosomes (CNN RNAi) or a kinetochore-based phosphatase gradient (Sds22 RNAi) did not result in cytokinesis defects on their own or in combination with loss of mABK. Disruption of aurora A kinase (AAK) activity resulted in midzone assembly defects, but did not significantly affect contractile ring positioning or cytokinesis. Live-cell imaging of a Förster resonance energy transfer (FRET)-based aurora kinase phosphorylation sensor revealed that midzone substrates were less phosphorylated in AAK-inhibited cells, despite the fact that midzone levels of active phosphorylated ABK (pABK) were normal. Interestingly, in the absence of mABK, an increased number of binucleated cells were observed following AAK inhibition. The data suggest that equatorial stimulation rather than polar relaxation mechanisms is the major determinant of contractile ring positioning and high-fidelity cytokinesis in Drosophila S2 cells. Furthermore, we propose that equatorial stimulation is mediated primarily by the delivery of factors to the cortex by noncentrosomal microtubules (MTs), as well as a midzone-derived phosphorylation gradient that is amplified by the concerted activities of mABK and a soluble pool of AAK.


Asunto(s)
Aurora Quinasa A/metabolismo , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Línea Celular , Centrosoma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Transferencia Resonante de Energía de Fluorescencia , Cinesinas/genética , Microtúbulos/metabolismo , Fosforilación , Interferencia de ARN
6.
J Vis Exp ; (107): e53594, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26863489

RESUMEN

Kinetochores are large protein-based structures that assemble on centromeres during cell division and link chromosomes to spindle microtubules. Proper distribution of the genetic material requires that sister kinetochores on every chromosome become bioriented by attaching to microtubules from opposite spindle poles before progressing into anaphase. However, erroneous, non-bioriented attachment states are common and cellular pathways exist to both detect and correct such attachments during cell division. The process by which improper kinetochore-microtubule interactions are destabilized is referred to as error correction. To study error correction in living cells, incorrect attachments are purposely generated via chemical inhibition of kinesin-5 motor, which leads to monopolar spindle assembly, and the transition from mal-orientation to biorientation is observed following drug washout. The large number of chromosomes in many model tissue culture cell types poses a challenge in observing individual error correction events. Drosophila S2 cells are better subjects for such studies as they possess as few as 4 pairs of chromosomes. However, small molecule kinesin-5 inhibitors are ineffective against Drosophila kinesin-5 (Klp61F). Here we describe how to build a Drosophila cell line that effectively replaces Klp61F with human kinesin-5, which renders the cells sensitive to pharmacological inhibition of the motor and suitable for use in the cell-based error correction assay.


Asunto(s)
Línea Celular , Proteínas de Drosophila/genética , Drosophila/citología , Inhibidores Enzimáticos/farmacología , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Animales , Drosophila/enzimología , Drosophila/genética , Técnicas de Silenciamiento del Gen , Humanos , Cinesinas/biosíntesis , Proteínas Asociadas a Microtúbulos , Regiones Promotoras Genéticas
8.
Curr Biol ; 25(14): 1842-51, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26166783

RESUMEN

Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-MT attachments are commonplace but are often corrected prior to anaphase. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK), typically occurs near spindle poles; however, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles, can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles. Hence, there is a conundrum: erroneous kinetochore-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome misalignment and an increased incidence of erroneous kinetochore-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated. We propose that an AAK activity gradient contributes to correcting mal-oriented kinetochore-MT attachments in the vicinity of spindle poles.


Asunto(s)
Aurora Quinasa A/genética , Polaridad Celular , Posicionamiento de Cromosoma , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animales , Aurora Quinasa A/metabolismo , Células Cultivadas , Cromosomas de Insectos/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Regulación de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura
9.
Curr Biol ; 23(3): R122-4, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23391389

RESUMEN

Accurate chromosome segregation during cell division requires that kinetochores couple microtubule dynamics to chromosome movement. New research reveals that the kinetochore-associated Ska1 complex hangs on to depolymerizing microtubules and brings some important friends along for the ride.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Humanos
10.
J Cell Biol ; 200(2): 203-18, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23337118

RESUMEN

Chromosome biorientation promotes congression and generates tension that stabilizes kinetochore-microtubule (kt-MT) interactions. Forces produced by molecular motors also contribute to chromosome alignment, but their impact on kt-MT attachment stability is unclear. A critical force that acts on chromosomes is the kinesin-10-dependent polar ejection force (PEF). PEFs are proposed to facilitate congression by pushing chromosomes away from spindle poles, although knowledge of the molecular mechanisms underpinning PEF generation is incomplete. Here, we describe a live-cell PEF assay in which tension was applied to chromosomes by manipulating levels of the chromokinesin NOD (no distributive disjunction; Drosophila melanogaster kinesin-10). NOD stabilized syntelic kt-MT attachments in a dose- and motor-dependent manner by overwhelming the ability of Aurora B to mediate error correction. NOD-coated chromatin stretched away from the pole via lateral and end-on interactions with microtubules, and NOD chimeras with either plus end-directed motility or tip-tracking activity produced PEFs. Thus, kt-MT attachment stability is modulated by PEFs, which can be generated by distinct force-producing interactions between chromosomes and dynamic spindle microtubules.


Asunto(s)
Posicionamiento de Cromosoma , Cromosomas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Células Cultivadas , Cromosomas/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Regulación de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA