Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(37): 19816-19829, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39213656

RESUMEN

A self-assembly-directed thixotropic metallohydrogel (i.e., Mg-Tetrakis) of Mg(II)-metal salt and N,N,N',N'-tetrakis(2-hydroxy-ethyl)ethylenediamine (i.e., Tetrakis) was successfully achieved. The organic chemical component N,N,N',N'-tetrakis(2-hydroxy-ethyl)ethylenediamine was used as a low-molecular-weight gelator, and water was employed as the gel-forming solvent. The fabricated supramolecular metallohydrogel promisingly depicted viscoelastic and mechanoelastic behaviors, which are interpreted through various rheological parameters. The thixotropic behavior of the metallohydrogel is also well characterized through this rheological study. Field emission scanning electron microscopy microstructural analyses were performed to visualize the morphological arrangements of the metallohydrogel. The anticancer properties of the synthesized metallogels are investigated through this work. The cytotoxic potential of the metallohydrogel on the MCF-7 breast cancer cell line is critically examined. Reducing the growth of breast cancer cell line MCF-7 through the treatment of gel on the colony formation assay has been explored through the work. The antimigratory potential of the metallohydrogel on the MCF-7 cell was also scrutinized. The anticancer effect of the fabricated metallohydrogel is inspected through various assay formation strategies, like wound healing assay, tumor spheroid inhibition assay, nuclear fragmentation assay, and so on. Quantitative reactive oxygen species analysis of the cancer cells by treatment with the metallohydrogel was also conducted through this study. The mechanistic apoptosis study was executed by studying the expression of various apoptotic markers like BAX, BCL2, PUMA, and NOXA.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Especies Reactivas de Oxígeno , Humanos , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Magnesio/química , Magnesio/farmacología , Femenino , Ensayos de Selección de Medicamentos Antitumorales
2.
ACS Appl Bio Mater ; 7(8): 5609-5621, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39074362

RESUMEN

α-Ketoglutaric acid-based supramolecular Zn(II) metallogels in N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved. Zinc(II) acetate salt and α-ketoglutaric acid directed a three-dimensional noncovalent supramolecular network individually entrapped with N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent to accomplish their respective semisolid flexible metallogel frameworks. The gel features of these synthesized materials were verified by rheological experiments such as amplitude sweep and frequency sweep measurements. The discrete morphological arrangements were analyzed for these metallogel samples through field emission scanning electron microscopic (FESEM) analysis. Highly stacked interconnected blocks of Zn-α-Glu-DMF with hierarchical arrays are found due to the occurrence of diverse noncovalent supramolecular interactions present in the metallogel framework. A distinct spherical shaped microstructure with interconnected hierarchical assembly has been observed for the FESEM pattern of Zn-α-Glu-DMSO. FTIR spectroscopic measurement was carried out to detect some important stretching vibrations of xerogel samples of different metallogels as well as gel-constructing chemical ingredients. A substantial amount of peak shifting of xerogel samples for both metallogels is observed in FTIR analysis, indicating the presence of different noncovalent interactions. ESI-mass analysis portrays a possible metallogel-constructing strategy. The antibacterial potentialities of both metallogels were investigated. These materials exhibited good antimicrobial efficacy toward Gram-positive and Gram-negative bacterial strains (including Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Salmonella typhimurium). Both synthesized metallogels were successfully implemented to fabricate the photoresponsive semiconducting diode. These materials offer excellent photodiode parameters including an ideality factor and rectification ratio (ON/OFF ratio). Synthesized metallogels are used to successfully fabricate photodiodes with an Al/p-Si/metallogel/Au structure. The ideality factors (η) for Zn-α-Glu-DMF and Zn-α-Glu-DMSO are found as 1.3 and 2.3, respectively, in dark conditions. The rectification ratios for Zn-α-Glu-DMF and Zn-α-Glu-DMSO metallogels are also determined, and these are found as 40 and 10, respectively.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Geles , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Solventes , Zinc , Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Geles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Solventes/química , Tamaño de la Partícula , Semiconductores , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/farmacología
3.
Inorg Chem ; 63(26): 12003-12016, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904106

RESUMEN

Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.

4.
ACS Appl Bio Mater ; 6(12): 5442-5457, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37997919

RESUMEN

Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.


Asunto(s)
Neuroblastoma , Sales (Química) , Humanos , Solventes , Temperatura , Células HEK293 , Antibacterianos/farmacología , Zinc/farmacología
5.
Langmuir ; 39(46): 16584-16595, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37934977

RESUMEN

The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.

6.
Heliyon ; 5(6): e01845, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31211258

RESUMEN

The processing volume of bioengineering operations requires flow properties of algal mass for effective processing techniques. Chlorella Vulgaris microalgae cultured at 25 °C in Tap media under continuous illumination was considered. It showed an exponential phase of growth up to 8 days and then a stationary phase of growth from 8 days to 15 days. The rheological properties of microalgae biomass during the growth represented power law model. Microscopic analysis showed the influence of shearing on variation of algal structure from clusters to complete cell separation. The flow properties supported the microscopy analysis showing the shear thickening property at high shear rates and shear thinning nature at low shear regime. Optimal power required for the agitation of biomass based on the variations of non-Newtonian viscosity were predicted by considering the vessel geometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA