Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 1328, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693936

RESUMEN

Novel molybdenum (Mo)-doped nickel oxide (NiO) Nanoparticles (NPs) were synthesized by using a simple sonochemical methodology and the synthesized NPs were investigated for antioxidant, and antibacterial applications. The X-ray diffraction (XRD) analysis revealed that the crystal systems of rhombohedral (21.34 nm) and monoclinic (17.76 nm) were observed for pure NiO and Mo-doped NiO NPs respectively. The scanning electron microscopy (SEM) results show that the pure NiO NPs possess irregular spherical shape with an average particle size of 93.89 nm while the Mo-doped NiO NPs exhibit spherical morphology with an average particle size of 85.48 nm. The ultraviolet-visible (UV-Vis) spectrum further indicated that the pure and Mo-doped NiO NPs exhibited strong absorption band at the wavelengths of 365 and 349 nm, respectively. The free radical scavenging activity of NiO and Mo-doped NiO NPs was also investigated by utilizing several biochemical assays. The Mo-doped NiO NPs showed better antioxidant activity (84.2%) towards ABTS. + at 200 µg/mL in comparison to their pure counterpart which confirmed that not only antioxidant potency of the doped NPs was better than pure NPs but this efficacy was also concentration dependant as well. The NiO and Mo-doped NiO NPs were further evaluated for their antibacterial activity against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The Mo-doped NiO NPs displayed better antibacterial activity (25 mm) against E. coli in comparison to the pure NPs. The synthesized NPs exhibited excellent aptitude for multi-dimensional applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Antioxidantes/farmacología , Molibdeno/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X
2.
Nanomaterials (Basel) ; 12(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630837

RESUMEN

The heat enhancement in hybrid nanofluid flow through the peristaltic mechanism has received great attention due to its occurrence in many engineering and biomedical systems, such as flow through canals, the cavity flow model and biomedicine. Therefore, the aim of the current study was to discuss the hybrid nanofluid flow in a symmetric peristaltic channel with diverse effects, such as electromagnetohydrodynamics (EMHD), activation energy, gyrotactic microorganisms and solar radiation. The equations governing this motion were simplified under the approximations of a low Reynolds number (LRN), a long wavelength (LWL) and Debye-Hückel linearization (DHL). The numerical solutions for the non-dimensional system of equations were tackled using the computational software Mathematica. The influences of diverse physical parameters on the flow and thermal characteristics were computed through pictorial interpretations. It was concluded from the results that the thermophoresis parameter and Grashof number increased the hybrid nanofluid velocity near the right wall. The nanoparticle temperature decreased with the radiation parameter and Schmidt number. The activation energy and radiation enhanced the nanoparticle volume fraction, and motile microorganisms decreased with an increase in the Peclet number and Schmidt number. The applications of the current investigation include chyme flow in the gastrointestinal tract, the control of blood flow during surgery by altering the magnetic field and novel drug delivery systems in pharmacological engineering.

3.
Int J Biol Macromol ; 198: 147-156, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971642

RESUMEN

This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.


Asunto(s)
Nanofibras
4.
Sci Prog ; 104(4): 368504211044848, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34612738

RESUMEN

The key characteristics of the sliding mode control (SMC) are the ability to manage unmodeled dynamics with rapid response and the inherent robustness of parametric differences, making it an appropriate choice for the control of power electronic converters. However, its drawback of changing switching frequency causes critical electro-magnetic compatibility and switching power loss issues. This paper addresses the problem by proposing a dynamic integral sliding mode control for power converters having fixed switching frequency. A special hardware test rig is developed and tested under unregulated 12.5-22.5 V input and 30 V output. The experimental findings indicate excellent controller efficiency under wide range of loads and uncertain input voltage conditions. In addition, the findings indicate that the closed-loop system is robust to sudden differences in load conditions. This technique provides an improvement of 24.52% in the rise time, 20.10% in the settling time and 42.85% in robustness of the controller as compared to conventional controllers. Furthermore, the comparison with the existing fixed-frequency sliding mode control techniques is presented in a tabular form.

5.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 2): o295, 2011 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-21522986

RESUMEN

In the title mol-ecule, C(11)H(17)NO(3)S, the S atom has a distorted tetra-hedral geometry [maximum deviation: O-S-O = 119.08 (9)°]. In the crystal, mol-ecules are connected by inter-molecular N-H⋯O, O-H⋯O and C-H⋯O hydrogen bonds, forming layers of mol-ecules aligned parallel to (110). The 2-methyl-propan-1-ol group of the mol-ecule is disordered over two positions with an 0.592 (4):0.408 (4) occupancy ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA