Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29904-29916, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005775

RESUMEN

In this study, we investigated the effect of heat treatment (HT) and hot isostatic press (HIP) on the corrosion behavior of Ti6Al4 V, manufactured by electron beam melting (EBM) additive manufacturing. The preliminary results showed that the thermal process makes the columnar structure more pronounced and the α-lathe coarser compared to EBM. The ß phase disappeared with the aging treatment and when increasing the HIP temperature treatment. According the open circuit potential (E ocp) behavior of samples, the HIP3 sample had performed more positive corrosion potential than rivals after 2 h of immersion probably due to equiaxed grain with coarser α-late and the absence of the ß phase. In adverse, inferior corrosion behavior was observed for HIP1 because of a higher quantity of the ß phase causing probably galvanic corrosion. The HIP process leads to a lower corrosion potential than EBM. At least one protective oxide layer formation was observed for all samples at the anodic branch, and the current density was lower for the HT3 sample. The microstructure analysis revealed the presence of the ß-phase in the form of needle-like for the HT1 sample and HIP1 in the corroded area. Furthermore, the EDS line analysis showed the presence of aluminum with oxygen at the edge of the corrosion area for HIP1 suggesting aluminum plays a barrier against degradation. On the other hand, the HT1 showed higher impedance resistance due to the coarser α-lathe microstructure and well-defined ß phase.

2.
Materials (Basel) ; 17(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063750

RESUMEN

Additive friction stir deposition (AFSD) is an emerging solid-state additive manufacturing process with a high deposition rate. Being a non-fusion additive manufacturing (AM) process, it significantly eliminates problems related to melting such as cracking or high residual stresses. Therefore, it is possible to process reactive materials or high-strength alloys with high susceptibility to cracking. Although the residual stresses are lower in this process than with the other AM processes, depending on the deposition path, geometry, and boundary conditions, residual stresses may lead to undesired deformations and deteriorate the dimensional accuracy. Thermal cycling during layer deposition, which also depends on the geometry of the manufactured component, is expected to affect mechanical properties. To this day, the influence of the deposit geometry on the residual stresses and mechanical properties is not well understood, which presents a barrier for industry uptake of this process for large-scale part manufacturing. In this study, a stepped structure with 4, 7, and 10 passes manufactured via AFSD is used to investigate changes in microstructure, residual stress, and mechanical property as a function of the number of passes. The microstructure and defects are assessed using scanning electron microscopy and electron backscatter diffraction. Hardness maps for each step are created. The residual stress distributions at the centreline of each step are acquired via non-destructive neutron diffraction. The valuable insights presented here are essential for the successful utilisation of AFSD in industrial applications.

3.
Heliyon ; 10(5): e27243, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463898

RESUMEN

Additive manufacturing has revolutionised the production of functional components and assemblies, offering a high degree of manufacturing flexibility. This review explores the latest advancements in additive manufacturing, focusing on its fusion-based and solid-state based technologies, and highlights the use of recycled aluminium as feedstock in these processes. The advantages and limitations of incorporating recycled materials are thoroughly analysed, considering factors such as material properties, sustainability, and process acceptance. While up to 14.4 kg CO2 per kg of aluminium is released during primary aluminium ingot production, solid-state based additive manufacturing, which is tolerant of feedstock contamination, can directly recycle aluminium. Meanwhile, fusion based additive manufacturing can readily utilise recycling pathways such as maintaining grade, upcycling, and downcycling, as well as powder reuse, providing opportunities for significant emissions reduction. The examination of feedstock manufacturing in this review, such as wire for WAAM and powder for PBF, indicates that this step indirectly increases the resource consumption of additive manufacturing. Finally, the alignment of aluminium recycling and additive manufacturing with Circular Economy principles and the UN's sustainable development goals are addressed, highlighting contributions to SDGs 3, 9, and 12.

4.
J Mech Behav Biomed Mater ; 151: 106360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194786

RESUMEN

Instead of a textured surface with irregular pore size and distribution as in conventional dental implants, the use of lattice structures with regular geometric structure and controlled pore size produced by selective laser powder bed fusion melting (LPDF) technique will provide more predictable and successful results regarding osseointegration and mechanics. In this study, biomimetic dental implants with 2 different pore designs were fabricated by LPDF technique and compared with conventional dental implants in terms of surface characterization and resistance to biomechanical forces. Finite element analysis, scanning electron microscopy, computed micro tomography scanning, ISO 14801 tests and detork tests were used for the comparison. The tested biomimetic implants were found to be as durable as conventional implants in terms of mechanical strength and detork values. They were also found to be 40-60% more advantageous than conventional dental implants with respect to surface area and volume. As a result, it was concluded that biomimetic dental implants with sufficient mechanical strength and complex surface geometries can be made as designed without changing the reliable base material and can be produced using a different manufacturing method.


Asunto(s)
Implantes Dentales , Polvos , Biomimética , Oseointegración , Rayos Láser , Titanio/química
5.
Materials (Basel) ; 15(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683064

RESUMEN

Although Direct Metal Laser Melting (DMLM), a powder bed fusion (PBF) Additive Manufacturing (AM) for metallic materials, provides many advantages over conventional manufacturing such as almost unlimited design freedom, one of its main limitations is the need for support structures beneath overhang surfaces. Support structures are generally in contact with overhang surfaces to physically prop them up; therefore, they need to be removed after manufacturing due to not constituting a part of the main component design. The removal of supports is a process sequence adding extra time and cost to the overall manufacturing process and could result in damaging the main component. In this study, to examine the feasibility of contact-free supports for overhang surfaces in the DMLM process, coupons with these novel types of supports were prepared from CoCrMo alloy powder. This study aims to understand the effect of two parameters: the gap distance between supports and overhang surfaces and the inclination angle of overhang surfaces, on the surface topography and microstructural properties of these surfaces. Visual inspection, roughness measurements, and optical microscopy were utilized as characterization methods The roughness parameters (Ra, Rq, and Rz) were obtained using the focus variation method, and optical microscope analysis was performed on the cross-sections of the overhang surfaces to investigate the sub-surface microstructure and surface topology. Results showed that contact-free supports have a positive effect on decreasing surface roughness at all build angles when the gap distance is correctly set to avoid sintering of the powder in between the overhang and supports or to avoid too large gaps eliminating the desired effect of the higher thermal conductivity.

6.
Materials (Basel) ; 12(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775222

RESUMEN

Fused Filament Fabrication (FFF), classified under material extrusion additive manufacturing technologies, is a widely used method for fabricating thermoplastic parts with high geometrical complexity. To improve the mechanical properties of pure thermoplastic materials, the polymeric matrix may be reinforced by different materials such as carbon fibers. FFF is an advantageous process for producing polymer matrix composites because of its low cost of investment, high speed and simplicity as well as the possibility to use multiple nozzles with different materials. In this study, the aim was to investigate the dimensional accuracy and mechanical properties of chopped carbon-fiber-reinforced tough nylon produced by the FFF process. The dimensional accuracy and manufacturability limits of the process are evaluated using benchmark geometries as well as process-inherent effects like stair-stepping effect. The hardness and tensile properties of produced specimens in comparison to tough nylon without any reinforcement, as well as continuous carbon-reinforced specimens, were presented by taking different build directions and various infill ratios. The fracture surfaces of tensile specimens were observed using a Scanning Electron Microscope (SEM). The test results showed that there was a severe level of anisotropy in the mechanical properties, especially the modulus of elasticity, due to the insufficient fusion between deposited layers in the build direction. Moreover, continuous carbon-reinforced specimens exhibited very high levels of tensile strength and modulus of elasticity whereas the highest elongation was achieved by tough nylon without reinforcement. The failure mechanisms were found to be inter-layer porosity between successive tracks, as well as fiber pull out.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA