Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 13(9): e1006966, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28863138

RESUMEN

Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Epidermis/metabolismo , Epigénesis Genética , Genoma , Queratinocitos , Ratones , Regiones Promotoras Genéticas , Piel/metabolismo
2.
Sci Rep ; 6: 31782, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27545104

RESUMEN

Components of the type II CRISPR-Cas complex in bacteria have been used successfully in eukaryotic cells to facilitate rapid and accurate cell line engineering, animal model generation and functional genomic screens. Such developments are providing new opportunities for drug target identification and validation, particularly with the application of pooled genetic screening. As CRISPR-Cas is a relatively new genetic screening tool, it is important to assess its functionality in a number of different cell lines and to analyse potential improvements that might increase the sensitivity of a given screen. To examine critical aspects of screening quality, we constructed ultra-complex libraries containing sgRNA sequences targeting a collection of essential genes. We examined the performance of screening in both haploid and hypotriploid cell lines, using two alternative guide design algorithms and two tracrRNA variants in a time-resolved analysis. Our data indicate that a simple adaptation of the tracrRNA substantially improves the robustness of guide loss during a screen. This modification minimises the requirement for high numbers of sgRNAs targeting each gene, increasing hit scoring and creating a powerful new platform for successful screening.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Marcación de Gen/métodos , Ingeniería Genética/métodos , Pruebas Genéticas/métodos , Secuencia de Bases , Línea Celular Tumoral , Células HEK293 , Células HL-60 , Humanos , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados
3.
Development ; 141(1): 101-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24346698

RESUMEN

Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/metabolismo , Células Madre Multipotentes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/metabolismo , ADN Helicasas/genética , Células Epidérmicas , Epidermis/embriología , Epidermis/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Regulación del Desarrollo de la Expresión Génica , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Fosfoproteínas/genética , Unión Proteica , Pliegue de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Ribonucleoproteínas/metabolismo , Factores de Empalme Serina-Arginina , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA