Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298281

RESUMEN

Precise data on the non-variant equilibrium of the four phases (vapor-aqueous solution-ice-gas hydrate) in P-T coordinates are highly desired for developing accurate thermodynamic models and can be used as reference points (similar to the triple point of water). Using the two-component hydrate-forming system CO2-H2O, we have proposed and validated a new express procedure for determining the temperature and pressure of the lower quadruple point Q1. The essence of the method is the direct measurement of these parameters after the successive formation of the gas hydrate and ice phases in the initial two-phase gas-water solution system under intense agitation of the fluids. After relaxation, the system occurs in the same equilibrium state (T = 271.60 K, P = 1.044 MPa), regardless of the initial parameters and the order of crystallization of the CO2 hydrate and ice phases. Considering the combined standard uncertainties (±0.023 K, ±0.021 MPa), the determined P and T values agree with the results of other authors obtained by a more sophisticated indirect method. Validating the developed approach for systems with other hydrate-forming gases is of great interest.


Asunto(s)
Dióxido de Carbono , Agua , Dióxido de Carbono/química , Agua/química , Hielo , Gases/química , Temperatura
2.
Polymers (Basel) ; 15(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242887

RESUMEN

Polymeric models of the core prepared with a Raise3D Pro2 3D printer were employed for methane hydrate formation. Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), carbon fiber reinforced polyamide-6 (UltraX), thermoplastic polyurethane (PolyFlex), and polycarbonate (ePC) were used for printing. Each plastic core was rescanned using X-ray tomography to identify the effective porosity volumes. It was revealed that the polymer type matters in enhancing methane hydrate formation. All polymer cores except PolyFlex promoted the hydrate growth (up to complete water-to-hydrate conversion with PLA core). At the same time, changing the filling degree of the porous volume with water from partial to complete decreased the efficiency of hydrate growth by two times. Nevertheless, the polymer type variation allowed three main features: (1) managing the hydrate growth direction via water or gas preferential transfer through the effective porosity; (2) the blowing of hydrate crystals into the volume of water; and (3) the growth of hydrate arrays from the steel walls of the cell towards the polymer core due to defects in the hydrate crust, providing an additional contact between water and gas. These features are probably controlled by the hydrophobicity of the pore surface. The proper filament selection allows the hydrate formation mode to be set for specific process requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA