Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.380
Filtrar
1.
Exp Eye Res ; : 110097, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284505

RESUMEN

Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-ß2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-ß2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and ß-catenin in the PVR membranes. ICG-001, a ß-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and ß-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.

2.
Front Genet ; 15: 1430275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113685

RESUMEN

Background: Neuropathic pain (NP) is a debilitating and refractory chronic pain with a higher prevalence especially in elderly patients. Cell senescence considered a key pathogenic factor in NP. The objective of this research is to discover genes associated with aging in peripheral blood of individuals with NP using bioinformatics techniques. Methods: Two cohorts (GSE124272 and GSE150408) containing peripheral blood samples of NP were downloaded from the GEO database. By merging the two cohorts, differentially expressed aging-related genes (DE-ARGs) were obtained by intersection with aging-related genes. The potential biological mechanisms of DE-ARGs were further analyzed through GO and KEGG. Three machine learning methods, namely, LASSO, SVM-RFE, and Random Forest, were utilized to identify diagnostic biomarkers. A Nomogram model was developed to assess their diagnostic accuracy. The validation of biomarker expression and diagnostic effectiveness was conducted in three distinct pain cohorts. The CIBERSORT algorithm was employed to evaluate the immune cell composition in the peripheral blood of patients with NP and investigate its association with the expression of diagnostic biomarkers. Results: This study identified a total of 24 DE-ARGs, mainly enriched in "Chemokine signaling pathway," "Inflammatory mediator regulation of TRP channels," "HIF-1 signaling pathway" and "FOXO signaling pathway". Three machine learning algorithms identified a total of four diagnostic biomarkers (CEBPA, CEACAM1, BTG3 and IL-1R1) with good diagnostic performance and the similar expression difference trend in different types of pain cohorts. The expression levels of CEACAM1 and IL-1R1 exhibit a positive correlation with the percentage of neutrophils. Conclusion: Using machine learning techniques, our research identified four diagnostic biomarkers related to aging in peripheral blood, providing innovative approaches for the diagnosis and treatment of NP.

3.
EBioMedicine ; 107: 105281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142074

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS: We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS: The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION: These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING: This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Transgénicos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/metabolismo , Humanos , SARS-CoV-2/fisiología , Ratones , Pulmón/virología , Pulmón/metabolismo , Pulmón/patología , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Femenino , Modelos Animales de Enfermedad , Masculino
4.
Environ Pollut ; 360: 124764, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154884

RESUMEN

Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.


Asunto(s)
Células Epiteliales , Ferroptosis , Ferroptosis/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Animales , Ratones , Humanos , Hierro/metabolismo , Humo/efectos adversos , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Córnea/metabolismo , Peroxidación de Lípido/efectos de los fármacos
5.
Opt Lett ; 49(17): 5007-5010, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208020

RESUMEN

This work investigates the impact of carrier noise induced by an external current source on the linewidth enhancement factor (LEF) and relative intensity noise (RIN) of a 100 GHz quantum dot fourth-order colliding-pulse mode-locked laser (MLL), driven by a normal pump with Gaussian-distributed carrier sequences and a quiet pump with sub-Poissonian-distributed carrier sequences. The results indicate that under a normal pump, the LEFs are approximately zero for reverse saturable absorber (SA) bias voltages ranging from 0 to 2.5 V, and the laser achieves a RIN as low as -156 dB/Hz. When using a quiet pump, both the LEF and RIN are reduced across all SA bias conditions, particularly at low reverse SA bias voltages. Specifically, the LEF decreases by up to 0.58 at 0 V, and the average RIN spectrum is reduced by more than 3 dB at the same voltage. This work provides a straightforward approach for the development and optimization of multi-channel light sources for dense wavelength division multiplexing (DWDM) technologies with low optical noise.

6.
Transl Vis Sci Technol ; 13(7): 20, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078643

RESUMEN

Purpose: To examine the effects of serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) on choroidal structures with different blood glucose levels in patients with diabetes mellitus (DM) with acromegaly without diabetic retinopathy. Methods: Eighty-eight eyes of 44 patients with acromegaly were divided into a nondiabetic group (23 patients, 46 eyes) and a diabetic group (21 patients, 42 eyes). Forty-four age- and sex-matched healthy controls and 21 patients with type 2 DM without diabetic retinopathy were also included. Linear regression models with a simple slope analysis were used to identify the correlation and interaction between endocrine parameters and choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), and choroidal vascular index (CVI). Results: Our study revealed significant increases in the ChT, LA, SA, and TCA in patients with acromegaly compared with healthy controls, with no difference in the CVI. Comparatively, patients with DM with acromegaly had greater ChT than matched patients with type 2 DM, with no significant differences in other choroidal parameters. The enhancement of SA, LA and TCA caused by an acromegalic status disappeared in patients with diabetic status, whereas ChT and CVI were not affected by the interaction. In the diabetic acromegaly, higher IGF-1 (P = 0.006) and GH levels (P = 0.049), longer DM duration (P = 0.007), lower blood glucose (P = 0.001), and the interaction between GH and blood glucose were associated independently with thicker ChT. Higher GH levels (P = 0.016, 0.004 and 0.007), longer DM duration (P = 0.022, 0.013 and 0.013), lower blood glucose (P = 0.034, 0.011 and 0.01), and the interaction of IGF-1 and blood glucose were associated independently with larger SA, LA, and TCA. As blood glucose levels increased, the positive correlation between serum GH level and ChT diminished, and became insignificant when blood glucose was more than 7.35 mM/L. The associations between serum IGF-1 levels and LA, SA, and TCA became increasingly negative, with LA, becoming significantly and negatively associated to the GH levels only when blood glucose levels were more than 8.59 mM/L. Conclusions: Acromegaly-related choroidal enhancements diminish in the presence of DM. In diabetic acromegaly, blood glucose levels are linked negatively with changes in choroidal metrics and their association with GH and IGF-1. Translational Relevance: We revealed the potential beneficial impacts of IGF-1 and GH on structural measures of the choroid in patients with DM at relatively well-controlled blood glucose level, which could provide a potential treatment target for diabetic retinopathy.


Asunto(s)
Acromegalia , Glucemia , Coroides , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Factor I del Crecimiento Similar a la Insulina , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/análisis , Acromegalia/sangre , Acromegalia/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Coroides/patología , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/sangre , Adulto , Anciano , Tomografía de Coherencia Óptica , Hormona de Crecimiento Humana/sangre , Estudios de Casos y Controles
7.
Sci China Life Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38987430

RESUMEN

Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.

8.
Chem Commun (Camb) ; 60(59): 7646-7649, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38963720

RESUMEN

Fluorescence-enhanced supra-amphiphiles based on (WP5)2⊃ENDTn were constructed successfully. When n = 9, they can self-assemble into uniform micelles with an average diameter of about 90 nm and be further applied in cell imaging.

9.
J Org Chem ; 89(14): 9721-9732, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38949994

RESUMEN

The enantioselective and diastereoselective control of 1,3-dipolar cycloaddition reactions to ß-substituted cyclic enones has been developed. The 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with cyclic dienones affords chiral tetrahydropyrrolo[2,1-a]phthalazine derivatives 3 through vinylogous iminium ion activation by combining a cinchona-based primary amine C3 and a chiral camphorsulfonic acid additive. Conversely, with a weaker 3,5-bis(trifluoromethyl)benzoic acid additive, the 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with ß-substituted cyclic enones leads to chiral hexahydroisoindolo[1,2-a]phthalazin-10(8H)-one derivatives 4 with excellent stereocontrol via endo-dienamine activation.

10.
BMC Endocr Disord ; 24(1): 121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044175

RESUMEN

BACKGROUND: Growth hormone (GH) positive pituitary neuroendocrine tumors do not always cause acromegaly. Approximately one-third of GH-positive pituitary tumors are classified as non-functioning pituitary tumors in clinical practice. They typically have GH and serum insulin-like growth factor 1 (IGF-1) levels in the reference range and no acromegaly-like symptoms. However, normal hormone levels might not exclude the underlying hypersecretion of GH. This is a rare and paradoxical case of pituitary tumor causing acromegaly-associated symptoms despite normal GH and IGF-1 levels. CASE PRESENTATION: We report a case of a 35-year-old woman with suspicious acromegaly-associated presentations, including facial changes, headache, oligomenorrhea, and new-onset diabetes mellitus and dyslipidemia. Imaging found a 19 × 12 × 8 mm pituitary tumor, but her serum IGF-1 was within the reference, and nadir GH was 0.7ng/ml after glucose load at diagnosis. A thickened skull base, increased uptake in cranial bones in bone scan, and elevated bone turnover markers indicated abnormal bone metabolism. We considered the pituitary tumor, possibly a rare subtype in subtle or clinically silent GH pituitary tumor, likely contributed to her discomforts. After the transsphenoidal surgery, the IGF-1 and nadir GH decreased immediately. A GH and prolactin-positive pituitary neuroendocrine tumor was confirmed in the histopathologic study. No tumor remnant was observed three months after the operation, and her discomforts, glucose, and bone metabolism were partially relieved. CONCLUSIONS: GH-positive pituitary neuroendocrine tumors with hormonal tests that do not meet the diagnostic criteria for acromegaly may also cause GH hypersecretion presentations. Patients with pituitary tumors and suspicious acromegaly symptoms may require more proactive treatment than non-functioning tumors of similar size and invasiveness.


Asunto(s)
Acromegalia , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Humanos , Femenino , Adulto , Acromegalia/diagnóstico , Acromegalia/complicaciones , Acromegalia/etiología , Tumores Neuroendocrinos/complicaciones , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/patología , Adenoma Hipofisario Secretor de Hormona del Crecimiento/complicaciones , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Adenoma Hipofisario Secretor de Hormona del Crecimiento/diagnóstico , Hormona de Crecimiento Humana/sangre , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedades Óseas/etiología , Enfermedades Óseas/diagnóstico , Enfermedades Óseas/patología
11.
Zool Res ; 45(4): 877-909, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39004865

RESUMEN

The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.


Asunto(s)
Investigación Biomédica , Animales , Investigación Biomédica/tendencias , Tupaiidae , Modelos Animales de Enfermedad , Tupaia , Modelos Animales
13.
Heliyon ; 10(13): e33323, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027580

RESUMEN

Background: Craniopharyngiomas have a high recurrence rate and a poor prognosis, and the key methods for reducing recurrences are unknown. The aim of this study was to explore the key points of microscopic or endoscopic transsphenoidal surgery used to treat infradiaphragmatic craniopharyngiomas. Methods: We reviewed the medical records of patients with infradiaphragmatic craniopharyngiomas who were admitted to Peking Union Medical College Hospital between 2011 and 2018. Results: When considering tumor location, all 34 patients had intrasellar tumors, with 19 of them exhibiting suprasellar extensions. Of the 34 patients, 24 patients underwent resection under the microscope and the remaining 10 patients underwent transsphenoidal endoscopic surgery. Gross total tumor resection was achieved in 16 patients. Twelve patients underwent invaded sellar diaphragm resection, while the remaining 22 patients were not. Cerebrospinal fluid leaks occurred during surgery in 18 patients. Visual acuity improved in two patients. After an average follow-up of 31.1 months, 13 patients experienced tumor recurrence. The short term recurrence rate in the sellar diaphragm resection group was significantly lower compared to the non-resected group (P < 0.001). Moreover, based on distinct surgical methods, the endoscope group displayed a reduced short term recurrence rate compared to the microscope group (P = 0.0048). Conclusion: Invaded sellar diaphragm resection emerges as a pivotal maneuver in craniopharyngioma surgery, substantively influencing tumor recurrence. Capitalizing on the advantageous angled lens of endoscopes, surgeons can achieve heightened visualization. Significantly, the endoscopic approach exhibits a superior capacity to curtail recurrence, while effectively managing potential complications, when contrasted with the microscope group.

14.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001110

RESUMEN

Aircraft ducts play an indispensable role in various systems of an aircraft. The regular inspection and maintenance of aircraft ducts are of great significance for preventing potential failures and ensuring the normal operation of the aircraft. Traditional manual inspection methods are costly and inefficient, especially under low-light conditions. To address these issues, we propose a new defect detection model called LESM-YOLO. In this study, we integrate a lighting enhancement module to improve the accuracy and recognition of the model under low-light conditions. Additionally, to reduce the model's parameter count, we employ space-to-depth convolution, making the model more lightweight and suitable for deployment on edge detection devices. Furthermore, we introduce Mixed Local Channel Attention (MLCA), which balances complexity and accuracy by combining local channel and spatial attention mechanisms, enhancing the overall performance of the model and improving the accuracy and robustness of defect detection. Finally, we compare the proposed model with other existing models to validate the effectiveness of LESM-YOLO. The test results show that our proposed model achieves an mAP of 96.3%, a 5.4% improvement over the original model, while maintaining a detection speed of 138.7, meeting real-time monitoring requirements. The model proposed in this paper provides valuable technical support for the detection of dark defects in aircraft ducts.

15.
Redox Biol ; 75: 103239, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901102

RESUMEN

Morphine, a typical opiate, is widely used for controlling pain but can lead to various side effects with long-term use, including addiction, analgesic tolerance, and hyperalgesia. At present, however, the mechanisms underlying the development of morphine analgesic tolerance are not fully understood. This tolerance is influenced by various opioid receptor and kinase protein modifications, such as phosphorylation and ubiquitination. Here, we established a murine morphine tolerance model to investigate whether and how S-nitrosoglutathione reductase (GSNOR) is involved in morphine tolerance. Repeated administration of morphine resulted in the down-regulation of GSNOR, which increased excessive total protein S-nitrosation in the prefrontal cortex. Knockout or chemical inhibition of GSNOR promoted the development of morphine analgesic tolerance and neuron-specific overexpression of GSNOR alleviated morphine analgesic tolerance. Mechanistically, GSNOR deficiency enhanced S-nitrosation of cellular protein kinase alpha (PKCα) at the Cys78 and Cys132 sites, leading to inhibition of PKCα kinase activity, which ultimately promoted the development of morphine analgesic tolerance. Our study highlighted the significant role of GSNOR as a key regulator of PKCα S-nitrosation and its involvement in morphine analgesic tolerance, thus providing a potential therapeutic target for morphine tolerance.


Asunto(s)
Tolerancia a Medicamentos , Morfina , Proteína Quinasa C-alfa , Animales , Ratones , Morfina/farmacología , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Nitrosación , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Masculino , Ratones Noqueados , Analgésicos Opioides/farmacología , Modelos Animales de Enfermedad , Alcohol Deshidrogenasa
16.
Int J Hyg Environ Health ; 260: 114404, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878408

RESUMEN

Lipid profiles are influenced by both noise and genetic variants. However, little is known about the associations of occupational noise and genetic variants with age-related changes in blood lipids, a crucial event in the initiation and evolution of atherosclerotic cardiovascular diseases. We aimed to evaluate the associations of blood lipid change rates with occupational noise and genetic variants in stress hormone biosynthesis-based genes. This cohort was established in 2012 and 2013 and was followed up until 2017. A total of 952 participants were included in the final analysis and all of them were categorized to two groups, the exposed group and control group, according to the exposed noise levels in their working area. Single nucleotide polymorphisms (SNPs) in stress hormone biosynthesis-based genes were genotyped. Five physical examinations were conducted from 2012 to 2017 and lipid measurements were repeated five times. The estimated annual changes (EACs) of blood lipid were calculated as the difference in blood lipid levels between any 2 adjacent examinations divided by their time interval (year). The generalized estimating equations for repeated measures analyses with exchangeable correlation structures were used to evaluate the influence of exposing to noise (versus being a control) and the SNPs mentioned above on the EACs of blood lipids. We found that the participants experienced accelerated age-related decline in high-density lipoprotein cholesterol (HDL-C) levels as they were exposed to noise (ß = -0.38, 95% confidence interval (CI), -0.66 to -0.10, P = 0.007), after adjusting for work duration, gender, smoking, alcohol consumption, and pack-years. This trend was only found in participants with COMT-rs165815 TT genotype (ß = -1.19, 95% CI, -1.80 to -0.58, P < 0.001), but not in those with the CC or CT genotypes. The interaction of noise exposure and rs165815 was marginally significant (Pinteraction = 0.010) after multiple adjustments. Compared with DDC-rs11978267 AA genotype carriers, participants carrying rs11978267 GG genotype had decreased EAC of triglycerides (TG) (ß = -5.06, 95% CI, -9.07 to -1.05, P = 0.013). Participants carrying DBH-rs4740203 CC genotype had increased EAC of total cholesterol (TC) (ß = 1.19, 95% CI, 0.06 to 2.33, P = 0.039). However, these findings were not statistically significant after multiple adjustments. These results indicated that Occupational noise exposure was associated with accelerated age-related decreases in HDL-C levels, and the COMT-rs165815 genotype appeared to modify the effect of noise exposure on HDL-C changes among the occupational population.


Asunto(s)
Ruido en el Ambiente de Trabajo , Polimorfismo de Nucleótido Simple , Humanos , Masculino , China , Adulto , Femenino , Estudios Longitudinales , Persona de Mediana Edad , Lípidos/sangre , HDL-Colesterol/sangre , Triglicéridos/sangre
17.
Nat Commun ; 15(1): 5376, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918409

RESUMEN

Kagome lattice has been actively studied for the possible realization of frustration-induced two-dimensional flat bands and a number of correlation-induced phases. Currently, the search for kagome systems with a nearly dispersionless flat band close to the Fermi level is ongoing. Here, by combining theoretical and experimental tools, we present Sc3Mn3Al7Si5 as a novel realization of correlation-induced almost-flat bands in the kagome lattice in the vicinity of the Fermi level. Our magnetic susceptibility, 27Al nuclear magnetic resonance, transport, and optical conductivity measurements provide signatures of a correlated metallic phase with tantalizing ferromagnetic instability. Our dynamical mean-field calculations suggest that such ferromagnetic instability observed originates from the formation of nearly flat dispersions close to the Fermi level, where electron correlations induce strong orbital-selective renormalization and manifestation of the kagome-frustrated bands. In addition, a significant negative magnetoresistance signal is observed, which can be attributed to the suppression of flat-band-induced ferromagnetic fluctuation, which further supports the formation of flat bands in this compound. These findings broaden a new prospect to harness correlated topological phases via multiorbital correlations in 3d-based kagome systems.

18.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714696

RESUMEN

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Asunto(s)
Astrocitos , Encéfalo , Toxoplasma , Animales , Astrocitos/metabolismo , Astrocitos/parasitología , Astrocitos/patología , Ratones , Toxoplasma/patogenicidad , Toxoplasma/fisiología , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Enfermedad Crónica , Polaridad Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Factor de Necrosis Tumoral alfa/metabolismo , Toxoplasmosis Cerebral/parasitología , Toxoplasmosis Cerebral/patología , Toxoplasmosis Cerebral/metabolismo
19.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816685

RESUMEN

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Asunto(s)
Células Dendríticas , Sepsis , Células Dendríticas/inmunología , Sepsis/inmunología , Sepsis/patología , Humanos , Animales , Muerte Celular Regulada , Autofagia , Apoptosis , Piroptosis
20.
J Adv Res ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740259

RESUMEN

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA