RESUMEN
MC3T3-E1 cells grown in the presence of ascorbic acid and ß-glycerophosphate (AA/ß-GP) express alkaline phosphatase and produce an extensive collagenous extracellular matrix. Differentiated MC3T3-E1 cells are more sensitive to hydrogen peroxide-induced oxidative stress than undifferentiated cells. In this study, we compared the profile of antioxidant enzymes and molecular markers of apoptosis in undifferentiated and differentiated MC3T3-E1 cells (cell differentiation was induced by treatment with AA/ß-GP). Differentiated osteoblasts showed lower expression and activity of catalase, glutathione S-transferase and glutathione peroxidase. The total superoxide dismutase activity and the expression of Cu/Zn superoxide dismutase were also lower, while the expression of Mn superoxide dismutase was higher in differentiated osteoblasts. The level of malondialdehyde, a widely used marker for oxidative stress, was lower in the AA/ß-GP group compared with control cells, but this difference was not significant. Western blotting showed that treatment with AA/ß-GP increased the Bax/Bcl-2 ratio used as an index of cellular vulnerability to apoptosis. In addition, the activities of caspases 3, 8 and 9 and cleaved poly (ADP) ribose polymerase were significantly higher in differentiated cells. These findings provide new insights into how changes in the activities of major antioxidant enzymes and in the signaling pathways associated with apoptosis may influence the susceptibility of bone cells to oxidative stress.
Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Glicerofosfatos/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Peróxido de Hidrógeno/farmacología , RatonesRESUMEN
Photoderivatives of riboflavin can modulate the proliferation and survival of cancer cells. In this work, we examined the influence of riboflavin and photoderivatives on osteoblast differentiation induced by ascorbic acid and ß-glycerophosphate. These compounds decreased the osteoblast proliferation, increased the alkaline phosphatase activity, promoted a reduction in matrix metalloproteinase-2 activity and the decreased in the OPG/RANKL ratio. The effects of flavins on osteoblasts were unrelated to the antioxidant activity of these compounds. The biological activity of osteogenic medium containing riboflavin and its photoderivatives involved the activation of different signaling pathways (AKT, FAK, CaMKII), caspases-3, -8 and -9, and up-regulation of the expression and/or stabilization of osteoblastic transcription factors (Runx2 and ß-catenin). These findings suggest a potential use of flavins as adjuvants to improve bone metabolism.
Asunto(s)
Flavinas/farmacología , Fotólisis , Riboflavina/farmacología , Complejo Vitamínico B/farmacología , Células 3T3 , Animales , Caspasas/efectos de los fármacos , Caspasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Osteoblastos/metabolismo , Riboflavina/química , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Complejo Vitamínico B/químicaRESUMEN
The effects of cadmium chloride (CdCl(2)) on oxidative stress in the skeletal muscle cell line C(2)C(12) were investigated. Myoblast cells that differentiated into myotubes were treated with CdCl(2) (1, 3, 5, 7.5, 10, and 12.5 microM) for 24, 48, and 72 h. Subsequent assay of cell homogenates for MTT (3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, neutral red uptake and nucleic acid content showed that cadmium was toxic to C(2)C(12) cells in a concentration-dependent manner. Glutathione-S-transferase activity (nmol microg of protein(-1) min(-1)) was increased with 1 and 3 microM CdCl(2) (36.9 +/- 5.6 and 32.1 +/- 6.0, respectively) compared to control cells (21.8 +/- 1.5), but decreased at higher concentrations (7.5 microM = 15.9 +/- 3.3, 10 microM = 15.9 +/- 4.6, and 12.5 microM = 10.5 +/- 2.8). An increase in malondialdehyde content (nmol microg of protein(-1)), especially at high CdCl(2) concentrations (control = 7.3 +/- 0.5; CdCl(2): 7.5 microM = 11.2 +/- 3.1, 10 microM = 14.6 +/- 3.8, and 12.5 microM = 20.5 +/- 6.5) indicated that there was enhanced lipid peroxidation. Light and scanning electron microscopy showed that there was a concentration-dependent loss of adherent cells and the formation of vesicles indicative of cell death. These results indicated that CdCl(2) increased oxidative stress in C(2)C(12) cells, and this stress probably compromised cell adhesion and the cellular antioxidant defense mechanisms.