Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 21(3): 147-159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100031

RESUMEN

Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.


Asunto(s)
Antiinfecciosos , Bacillus cereus , Humanos , Animales , Microbiología de Alimentos , Eugenol/farmacología , Leche/microbiología , Recuento de Colonia Microbiana , Esporas Bacterianas
2.
Foods ; 10(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071975

RESUMEN

Coenzyme Q0 (CoQ0) has anti-inflammatory and anti-tumor effects; however, the antimicrobial and antibiofilm activities of CoQ0 against Salmonella enterica serovar Typhimurium are unknown. Thus, we investigated the bacteriostatic and antibiofilm activities, along with the underlying mechanism, of CoQ0 against S. Typhimurium. The minimum inhibitory concentration (MIC) of CoQ0 against S. enterica serovars Typhimurium was 0.1-0.2 mg/mL (549-1098 µM), and CoQ0 at MIC and 2MIC decreased viable S. Typhimurium counts below detectable limits within 6 and 4 h, respectively. CoQ0 at 20MIC (4 mg/mL) reduced S. Typhimurium on raw chicken by 1.5 log CFU/cm3 within 6 h. CoQ0 effectively disrupted cell membrane integrity and induced morphological changes in the cell, resulting in hyperpolarization, decreased intracellular ATP concentrations, and cellular constituents leakage. Biofilm-associated S. Typhimurium cells were killed by CoQ0 treatment. These findings suggest that CoQ0 could be applied as a natural antibacterial substance for use against S. Typhimurium by the food industry.

3.
Foodborne Pathog Dis ; 16(10): 671-678, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31070474

RESUMEN

Vibrio parahaemolyticus is a halophilic Gram-negative foodborne pathogen that is widely distributed in marine environments. It can cause acute gastroenteritis and other diseases. This study aimed to investigate the antivirulence activity of thymoquinone (TQ) on V. parahaemolyticus. TQ was shown to effectively inhibit V. parahaemolyticus. Subminimum inhibitory concentrations of TQ inhibited swimming and swarming motility, quorum sensing, biofilm formation, the ability of V. parahaemolyticus to adhere and invade the host cells, and the expression of virulence-associated genes of V. parahaemolyticus. These findings suggest that TQ can effectively inhibit the growth of V. parahaemolyticus and significantly reduce its pathogenicity. Considering its safety and various biological activities, TQ has the potential to be developed as a natural antibacterial substance to reduce the diseases associated with V. parahaemolyticus.


Asunto(s)
Benzoquinonas/farmacología , Biopelículas/crecimiento & desarrollo , Percepción de Quorum , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , Factores de Virulencia/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Células CACO-2 , Humanos , Pruebas de Sensibilidad Microbiana , Alimentos Marinos/microbiología , Vibrio parahaemolyticus/patogenicidad , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA