Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 149: 126-138, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181628

RESUMEN

With the continuous control of anthropogenic emissions, China's air quality has improved significantly in recent years. Given this background, research on how the short-term exposure risks caused by air pollution in China have changed is insufficient. This study utilized hourly concentration data from ground observation stations and the official air quality guidelines of the Ministry of Ecology and Environment of China and the World Health Organization as standards to systematically investigate the spatiotemporal characteristics and short-term exposure risks of air pollution in China from 2015 to 2022. The results indicate that various atmospheric pollutants except for ozone showed a decreasing trend yearly. Nationwide, both single pollutant air pollution days (SAPDs) and multiple pollutant air pollution days (MAPDs) showed varying degrees of reduction within 15 and 25 days, respectively. SAPD was dominated mainly by excessive PM2.5 and PM10 pollutants, while MAPD was dominated mainly by excessive pollutant combinations, including PM2.5 + PM10, CO + PM2.5 + PM10, and SO2 + PM2.5 + PM10. As the concentration of atmospheric pollutants decreased, the total excess risk (ER) decreased yearly from 2015 to 2022, but there were significant regional differences. Now, the ER is less than 0.25% in southern China, in the range of 0.25%-0.5% in the North China Plain and some cities in the northeast, and higher than 1% in the northwest. Particulate matter is currently the primary pollutant posing short-term exposure risk in China, especially due to the impact of sandstorm weather. This study indicates that China's atmospheric cleaning action is significantly beneficial for reducing health risks.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Material Particulado , China , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Humanos , Medición de Riesgo
2.
Angew Chem Int Ed Engl ; : e202410356, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107253

RESUMEN

Electrocatalytic nitrate (NO3-) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86%, ammonia Faradaic efficiency of 96.11%, and ammonia selectivity of ~100%. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3-) as well as intermediates (NO2- and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3- reduction to NO2- predominantly occurs at Ag sites while NO2- tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.

3.
Environ Int ; 181: 108301, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939441

RESUMEN

Air pollution is a major threat to human health and ecosystems. Using 10-year (2013-2022) multi-source observations for the Beijing, China, we showed that clean-air actions have significantly reduced PM2.5, PM10, CO, NO2, and SO2 pollution, with an increase in the surface maximum daily 8-h average ozone (MDA8O3) concentrations during autumn and winter, leading to a rapid diminishment of the urban-suburban gap in air pollution. Secondary sources and vehicle emissions were enhanced in both urban and suburban areas in all seasons except summer from 2013 to 2022. By combining statistical analysis with the convergent cross-mapping model, the varying relationships between air pollution and meteorological conditions in the urban and suburban areas were delineated. The results suggested that boundary layer height and relative humidity exerted strong and stable influences on all air pollutants, except for MDA8O3, whose key meteorological driver was temperature. This study showed that increasing O3 trends in autumn and winter and aggravated O3 formation in summer in urban areas in Beijing became non-negligible from 2013 to 2022, despite the declining levels of air pollutants. Meteorological observations suggested that weather patterns in Beijing, characterized by higher temperatures, sunshine hours, and boundary layer height and lower relative humidity, have become more favorable for O3 formation in autumn and winter. Future mitigation efforts should focus on reducing VOC and NOx emissions to avoid further deterioration of O3 pollution under the frequent adverse meteorological conditions predicted under the background of global warming.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Beijing , Ecosistema , Contaminación Ambiental , China , Estaciones del Año , Monitoreo del Ambiente , Material Particulado
4.
Environ Pollut ; 338: 122725, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827354

RESUMEN

With climate warming, eastern China has experienced a significant increase in temperature accompanied by intensified ozone pollution. We aimed to investigate the spatiotemporal patterns and relationships between ozone levels and temperature in eastern China using observation-based ozone data from 418 air quality monitoring stations and temperature data from ERA5. The summer maximum temperature and annual ozone concentration in eastern China increased significantly between 2015 and 2022, with increases rate of 10% and 2.84 µg/m3 yr-1, respectively. The baseline ozone concentration was increasing over time. The average difference in MDA8 O3 concentration in spring, summer, and autumn decreased, with more ozone pollution spreading into spring and autumn, indicating a trend of prolonging the ozone season. During the June-July-August (JJA) period of 2015-2022, heatwaves increased significantly in eastern China. The frequency of heatwave events >10 days played a vital role in exacerbating ozone pollution. During the JJA period, the increase rate in MDA8 O3 concentration was 9.31 µg/m3 yr-1 during heatwave periods, significantly higher than that during non-heatwave periods (4.01 µg/m3 yr-1). The correlation between MDA8 O3 concentration and temperature was as high as 0.99, indicating that temperature was vital in ozone formation during the JJA period in eastern China. This study suggests that more stringent actions are needed to control ozone-precursor compounds during frequent summertime heatwaves in eastern China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminación Ambiental , China , Contaminación del Aire/análisis
5.
Environ Res ; 227: 115746, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36966994

RESUMEN

Fire is a widespread phenomenon that plays an important role in Earth's ecosystems. This study investigated the global spatiotemporal patterns of burned areas, daytime and nighttime fire counts, and fire radiative power (FRP) from 2001 to 2020. The month with the largest burned area, daytime fire count, and FRP presented a bimodal distribution worldwide, with dual peaks in early spring (April) and summer (July and August), while the month with the largest nighttime fire count and FRP showed a unimodal distribution, with a peak in July. Although the burned area showed decline at the global scale, a significant increase occurred in temperate and boreal forest regions, where nighttime fire occurrence and intensity have consistently increased in recent years. The relationships among burned area, fire count, and FRP were further quantified in 12 typical fire-prone regions. The burned area and fire count exhibited a humped relationship with FRP in most tropical regions, whereas the burned area and fire count constantly increased when the FRP was below approximately 220 MW in temperate and boreal forest regions. Meanwhile, the burned area and FRP generally increased with the fire count in most fire-prone regions, indicating an increased risk of more intense and larger fires as the fire count increased. The spatiotemporal dynamics of burned areas for different land cover types were also explored in this study. The results suggest that the burned areas in forest, grassland, and cropland showed dual peaks in April and from July to September while the burned areas in shrubland, bareland, and wetlands usually peaked in July or August. Significant increases in forest burned area were observed in temperate and boreal forest regions, especially in the western U.S. and Siberia, whereas significant increases in cropland burned area were found in India and northeastern China.


Asunto(s)
Ecosistema , Incendios , Bosques , Taiga , Estaciones del Año
6.
Artículo en Inglés | MEDLINE | ID: mdl-36232204

RESUMEN

Under the clean air action plans and the lockdown to constrain the coronavirus disease 2019 (COVID-19), the air quality improved significantly. However, fine particulate matter (PM2.5) pollution still occurred on the North China Plain (NCP). This study analyzed the variations of PM2.5, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) during 2017-2021 on the northern (Beijing) and southern (Henan) edges of the NCP. Furthermore, the drivers for the PM2.5 pollution episodes pre- to post-COVID-19 in Beijing and Henan were explored by combining air pollutant and meteorological datasets and the weighted potential source contribution function. Results showed air quality generally improved during 2017-2021, except for a slight rebound (3.6%) in NO2 concentration in 2021 in Beijing. Notably, the O3 concentration began to decrease significantly in 2020. The COVID-19 lockdown resulted in a sharp drop in the concentrations of PM2.5, NO2, SO2, and CO in February of 2020, but PM2.5 and CO in Beijing exhibited a delayed decrease in March. For Beijing, the PM2.5 pollution was driven by the initial regional transport and later secondary formation under adverse meteorology. For Henan, the PM2.5 pollution was driven by the primary emissions under the persistent high humidity and stable atmospheric conditions, superimposing small-scale regional transport. Low wind speed, shallow boundary layer, and high humidity are major drivers of heavy PM2.5 pollution. These results provide an important reference for setting mitigation measures not only for the NCP but for the entire world.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , Monóxido de Carbono/análisis , China/epidemiología , Control de Enfermedades Transmisibles , Monitoreo del Ambiente/métodos , Humanos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Dióxido de Azufre/análisis
7.
Artículo en Inglés | MEDLINE | ID: mdl-36141892

RESUMEN

Using air pollution monitoring data from 31 January to 31 March 2022, we evaluated air quality trends in Beijing and Zhangjiakou before and after the 2022 Winter Olympics and compared them with the conditions during the same period in 2021. The objective was to define the air quality during the 2022 Winter Olympics. The results indicated that: (1) the average concentrations of PM2.5, PM10, NO2, CO, and SO2 in Zhangjiakou during the 2022 Winter Olympics were 28.15, 29.16, 34.96, 9.06, and 16.41%, respectively, lower than those before the 2022 Winter Olympics; (2) the five pollutant concentrations in Beijing showed the following pattern: during the 2022 Winter Olympics (DWO) < before the 2022 Winter Olympics < after 2022 Winter Paralympics < during 2022 Winter Paralympics; (3) on the opening day (4 February), the concentrations of the five pollutants in both cities were low. PM2.5 and PM10 concentrations varied widely without substantial peaks and the daily average maximum values were 15.17 and 8.67 µg/m3, respectively, which were 65.56 and 69.79% lower than those of DWO, respectively; (4) the PM2.5 clean days in Beijing and Zhangjiakou DWO accounted for 94.12 and 76.47% of the total days, respectively, which were 11.76 and 41.18% higher than those during the same period in 2021; (5) during each phase of the 2022 Winter Olympics in Beijing and Zhangjiakou, the NO2/SO2 and PM2.5/SO2 trends exhibited a decrease followed by an increase. The PM2.5/PM10 ratios in Beijing and Zhangjiakou were 0.65 and 0.67, respectively, indicating that fine particulate matter was the main contributor to air pollution DWO.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Ciudades , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno , Material Particulado/análisis , Estaciones del Año
8.
Sci Total Environ ; 807(Pt 1): 150721, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34619217

RESUMEN

Most current scientific research on NO2 remote sensing focuses on tropospheric NO2 column concentrations rather than ground-level NO2 concentrations; however, ground-level NO2 concentrations are more related to anthropogenic emissions and human health. This study proposes a machine learning estimation method for retrieving the ground-level NO2 concentrations throughout China based on the tropospheric NO2 column concentrations from the TROPOspheric Monitoring Instrument (TROPOMI) and multisource geographic data from 2018 to 2020. This method adopts the XGBoost machine learning model characterized by a strong fitting ability and complex model structure, which can explain the complex nonlinear and high-order relationships between ground-measured NO2 and its influencing factors. The R2 values between the retrievals and the validation and test datasets are 0.67 and 0.73, respectively, which suggests that the proposed method can reliably retrieve the ground-level NO2 concentrations across China. The distribution characteristics, seasonal variations and interannual differences in ground-level NO2 concentrations are further analyzed based on the retrieval results, demonstrating that the ground-level NO2 concentrations exhibit significant geographical and seasonal variations, with high concentrations in winter and low concentrations in summer, and the highly polluted regions are concentrated mainly in Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), Cheng-Yu District (CY) and other urban agglomerations. Finally, the interannual variation in the ground-level NO2 concentrations indicates that pollution decreased continuously from 2018 to 2020.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Humanos , Aprendizaje Automático , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
9.
Chemosphere ; 287(Pt 4): 132435, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34606897

RESUMEN

Particulate matter 2.5 (PM2.5) pollution has long been a global environmental problem and still poses a great threat to public health. This study investigates global spatiotemporal variations in PM2.5 using the newly developed satellite-derived PM2.5 dataset from 1998 to 2018. An integrated exposure-response (IER) model was employed to examine the characteristics of PM2.5-related deaths caused by chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD), lung cancer (LC), and stroke in adults (age≥25), as well as lower respiratory infection (LRI) in children (age≤5). The results showed that high annual PM2.5 concentrations were observed mainly in East Asia and South Asia. Over the 19-year period, PM2.5 concentrations constantly decreased in developed regions, but increased in most developing regions. Approximately 84% of the population lived in regions where PM2.5 concentrations exceeded 10 µg/m3. Meanwhile, the vast majority of the population (>60%) in East and South Asia was consistently exposed to PM2.5 levels above 35 µg/m3. PM2.5 exposure was linked to 3.38 (95% UI: 3.05-3.70) million premature deaths globally in 2000, a number that increased to 4.11 (95% UI: 3.55-4.69) million in 2018. Premature deaths related to PM2.5 accounted for 6.54%-7.79% of the total cause of deaths worldwide, with a peak in 2011. Furthermore, developing regions contributed to the majority (85.95%-95.06%) of PM2.5-related deaths worldwide, and the three highest-ranking regions were East Asia, South Asia, and Southeast Asia. Globally, IHD and stroke were the two main contributors to total PM2.5-related deaths, followed by COPD, LC, and LRI.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Niño , Preescolar , Costo de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Material Particulado/análisis
10.
Geophys Res Lett ; 48(7): e2020GL091065, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34230714

RESUMEN

In late January 2020, China's rapid and strict control measures to curb the COVID-19 spread led to a sharp halt in socio-economic activity and a significant reduction in emissions. Using the ground-based observational data, the authors synergistically quantify the nation-wide variations of major air pollutant as well as meteorology during and after the lockdown. Their concentrations (except O3) exhibited significant reduction during February and March 2020, by more than 24% during the lockdown compared with the earlier time period and by more than 17% compared with that in the same period in 2019. In contrast, ozone increased rapidly by about 60% across the country during the lockdown. Abnormal increases in carbon monoxide and particulate matter concentrations in southwest China are attributed to the severe wildfires in Southeast Asia. The concentration of air pollutants bounced back rapidly after the full-scale reopen in March 2020, indicating the decisive role of emissions in the pollution formation.

11.
Huan Jing Ke Xue ; 42(6): 2604-2615, 2021 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-34032060

RESUMEN

Based on the MAIAC AOD and PM2.5 mass concentration data for the Beijing-Tianjin-Hebei region and surrounding areas from 2014 to 2018, the temporal and spatial differences in Aerosol Optical Depth (AOD) and PM2.5 mass concentrations were explored and their correlation was analyzed by linear regression. The results show that the daily average concentration of PM2.5 exceeds the standard for 33% and 57% of measurements based on the daily average standard values of the World Health Organization IT.1 and IT.2, respectively, indicating serious pollution levels. The annual average concentrations of PM2.5 and Terra and Aqua MAIAC AOD all show downward trends. The PM2.5 concentrations are high in winter and spring and low in summer and autumn; Terra and Aqua AOD values are high in spring and summer and low in autumn and winter. The seasonal and annual average concentrations of PM2.5 and AOD all show the regional pattern of "low in the north and high in the south". High-value areas are mainly located in southern Hebei, southwestern Shanxi, western Shandong, and northern Henan, while low-value areas are mainly located in northwestern Shanxi, northern Hebei, and eastern Shandong. The annual average concentration of PM2.5 is between 27 and 99µg·m-3, and the annual average AOD is between 0.20 and 0.69. The correlation between Aqua AOD and PM2.5 concentration is strong whereas and the correlations between Terra AOD, Aqua AOD, and PM2.5vary significantly in different seasons; overall, correlations are strongest in spring and winter and weakest in summer and autumn. After vertical-humidity correction, the correlation between satellite AOD and PM2.5 data is significantly improved.

12.
Artículo en Inglés | MEDLINE | ID: mdl-30181500

RESUMEN

Beijing, which is the capital of China, suffers from severe Fine Particles (PM2.5) pollution during the heating season. In order to take measures to control the PM2.5 pollution and improve the atmospheric environmental quality, daily PM2.5 samples were collected at an urban site from 15 November to 31 December 2016, characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility were analyzed. It was found that the daily average mass concentrations of PM2.5 ranged from 7.64 to 383.00 µg m-3, with an average concentration of 114.17 µg m-3. On average, the Organic Carbon (OC) and Elemental Carbon (EC) contributed 21.39% and 5.21% to PM2.5, respectively. Secondary inorganic ions (SNA: SO4²- + NO3- + NH4⁺) dominated the Water-Soluble Inorganic Ions (WSIIs) and they accounted for 47.09% of PM2.5. The mass concentrations of NH4⁺, NO3- and SO42- during the highly polluted period were 8.08, 8.88 and 6.85 times greater, respectively, than during the clean period, which contributed most to the serious PM2.5 pollution through the secondary transformation of NO2, SO2 and NH3. During the highly polluted period, NH4NO3 contributed most to the reconstruction extinction coefficient (b'ext), accounting for 35.7%, followed by (NH4)2SO4 (34.44%) and Organic Matter (OM: 15.24%). The acidity of PM2.5 in Beijing was weakly acid. Acidity of PM2.5 and relatively high humidity could aggravate PM2.5 pollution and visibility impairment by promoting the generation of secondary aerosol. Local motor vehicles contributed the most to NO3-, OC, and visibility impairment in urban Beijing. Other sources of pollution in the area surrounding urban Beijing, including coal burning, agricultural sources, and industrial sources in the Hebei, Shandong, and Henan provinces, released large amounts of SO2, NH3, and NO2. These, which were transformed into SO42-, NH4⁺, and NO3- during the transmission process, respectively, and had a great impact on atmospheric visibility impairment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Estaciones del Año , Beijing , Carbono/análisis , China , Monitoreo del Ambiente , Humedad
13.
Artículo en Inglés | MEDLINE | ID: mdl-30011803

RESUMEN

PM2.5 samples from Beijing, Tianjin, and Langfang were simultaneously collected from 20 November 2016 to 25 December 2016, and the organic carbon (OC) and elemental carbon (EC) content in the samples were measured and analyzed. The pollution characteristics and sources of OC and EC in atmospheric PM2.5 for three adjacent cities were discussed. The average mass concentrations of OC in PM2.5 in Beijing, Tianjin, and Langfang were 27.93 ± 23.35 µg/m³, 25.27 ± 12.43 µg/m³, and 52.75 ± 37.97 µg/m³, respectively, and the mean mass concentrations of EC were 6.61 ± 5.13 µg/m³, 6.14 ± 2.84 µg/m³, and 12.06 ± 6.81 µg/m³, respectively. The average mass concentration of total carbon (TC) accounted for 30.5%, 24.8%, and 49% of the average mass concentration of PM2.5 in the atmosphere. The total carbonaceous matter (TCA) in Beijing, Tianjin, and Langfang was 51.29, 46.57, and 96.45 µg/m³, respectively. The TCA was the main component of PM2.5 in the region. The correlation between OC and EC in the three cities showed R² values of 0.882, 0.633, and 0.784 for Beijing, Tianjin, and Langfang, respectively, indicating that the sources of urban carbonaceous aerosols had good consistency and stability. The OC/EC values of the three sampling points were 4.48 ± 1.45, 4.42 ± 1.77, and 4.22 ± 1.29, respectively, considerably greater than 2, indicating that the main sources of pollution were automobile exhaust, and the combustion of coal and biomass. The OC/EC minimum ratio method was used to estimate the secondary organic carbon (SOC) content in Beijing, Tianjin and Langfang. Their values were 10.73, 10.71, and 19.51, respectively, which accounted for 38%, 42%, and 37% of the average OC concentration in each city, respectively. The analysis of the eight carbon components showed that the main sources of pollutants in Beijing, Tianjin, and Langfang were exhaust emissions from gasoline vehicles, but the combustion of coal and biomass was relatively low. The pollution of road dust was more serious in Tianjin than in Beijing and Langfang. The contribution of biomass burning and coal-burning pollution sources to atmospheric carbon aerosols in Langfang was more prominent than that of Beijing and Tianjin.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Aerosoles , Beijing , Biomasa , Carbono/análisis , China , Ciudades , Carbón Mineral , Monitoreo del Ambiente , Centrales Eléctricas , Estaciones del Año , Emisiones de Vehículos
14.
Artículo en Inglés | MEDLINE | ID: mdl-30004395

RESUMEN

Urbanization and industrialization have spurred air pollution, making it a global problem. An understanding of the spatiotemporal characteristics of PM2.5 and PM10 concentrations (particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm, respectively) is necessary to mitigate air pollution. We compared the characteristics of PM2.5 and PM10 concentrations and their trends of China, India, and the U.S. from 2014 to 2017. Particulate matter levels were lowest in the U.S., while China showed higher concentrations, and India showed the highest. Interestingly, significant declines in PM2.5 and PM10 concentrations were found in some of the most polluted regions in China as well as the U.S. No comparable decline was observed in India. A strong seasonal trend was observed in China and India, with the highest values occurring in winter and the lowest in summer. The opposite trend was noted for the U.S. PM2.5 was highly correlated with PM10 for both China and India, but the correlation was poor for the U.S. With regard to reducing particulate matter pollutant concentrations, developing countries can learn from the experiences of developed nations and benefit by establishing and implementing joint regional air pollution control programs.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , China , Monitoreo del Ambiente , India , Estaciones del Año , Estados Unidos , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA