Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33851863

RESUMEN

Bletilla striata (Thunb.) Rchb. f. (Orchidaceae), a perennial plant, is a traditional Chinese herb (known as baiji) used to treat hemorrhage, scalding injuries, gastric ulcers, pulmonary diseases, and inflammation (Zu et al. 2019). In May 2019, foliar blight symptoms were observed on approximately 25% of B. striata (cv. Guiji No.1) plants in three plantations (∼4.5 hectares in total) in Ziyuan County, Guangxi Province, China. Initial symptoms were light brown, irregular, water-soaked spots on the plant leaves. Several spots often merged, forming large, irregular, lesions that extended onto the stem after a week and led to leaf abscission, and even plant death. To determine the causal agent, 5-mm squares cut from the margin of 6 infected leaves were surface disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 28°C (12-h light-dark cycle) for 3 days. The emerging hyphal tip of a single mycelium was transferred to PDA to obtain pure cultures of the isolates. Twenty isolates were obtained, and 10 isolates (50%) were initially white before turning light brown (∼4 days). Septate hyphae were 4.29 to 10.75 µm (average 6.42 µm) in diameter and branched at right angles with a constriction at the origin of the branch point. Staining with 1% safranin O and 3% KOH solution (Bandoni 1979) revealed multinucleated cells (3 to 9 nuclei per cell, n = 142). This morphology was typical of Rhizoctonia solani Kühn (Meyer et al. 1990). For species confirmation by molecular identification, three isolates (BJ101.6, BJ101.11, and BJ102.2) were cultured on PDA for 4 days, then DNA was extracted from the mycelium using the CTAB method (Guo et al. 2000), and the ribosomal ITS1-5.8S-ITS2 region was amplified by PCR using the universal fungal primers ITS1 and ITS4 (White et al. 1990). Internal transcribed spacer (ITS) sequences of strains BJ101.6, BJ101.11, and BJ102 (deposited in GenBank under accession nos MT406271, MT892815, and MT892814, respectively) had over 99% similarity with those of R. solani AG-2-2 IIIB in GenBank (accession nos JX913810 and AB054858) (Carling et al. 2002; Hong et al. 2012). Phylogenetic analysis using ITS sequences showed that the isolates clustered monophyletically with strains of R. solani AG-2-2 IIIB. The AG of the isolates was confirmed by their ability to grow well on PDA at 35°C, which separates AG-2-2 IIIB from AG-2-2 IV (Inokuti et al. 2019). Based on morphological characteristics and nucleotide sequence analysis, the isolates were identified as R. solani AG-2-2 IIIB. Pathogenicity was tested using 1.5-year-old B. striata (cv. Guiji No.1) plants grown in a perlite and peat moss mixture (1:3) in 7-cm pots. Healthy leaves on plants were inoculated with an aqueous suspension (approximately 1 × 105 hyphal fragments/mL, 100 µL) prepared from cultures of strains BJ101.6, BJ101.11, and BJ102.2, each isolate was inoculated onto three plants; three other plants with sterile water served as controls. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 28°C for 14 days (12-h photoperiod). Three days post-inoculation, leaves exposed to the mycelial fragments had symptoms similar to those originally observed in the field. No symptoms were detected on control plants. Experiments were replicated three times with similar results. To fulfill Koch's postulates, R. solani AG-2-2 IIIB was re-isolated on PDA from symptomatic leaves and confirmed by sequencing, whereas no fungus was isolated from the control plants. To our knowledge, this is the first report of R. solani AG-2-2 IIIB causing foliar blight on B. striata in China, and these findings will be useful for further control strategies and research.

2.
Plant Dis ; 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258424

RESUMEN

Bletilla striata (Thunb.) Rchb. f. (Orchidaceae) is traditionally used for hemostasis and detumescence in China. In April 2019, a leaf spot disease on B. striata was observed in plant nurseries in Guilin, Guangxi Province, China, with an estimated incidence of ~30%. Initial symptoms include the appearance of circular or irregular brown spots on leaf surfaces, which progressively expand into large, dark brown, necrotic areas. As lesions coalesce, large areas of the leaf die, ultimately resulting in abscission. To isolate the pathogen, representative samples exhibiting symptoms were collected, leaf tissues (5 × 5 mm) were cut from the junction of diseased and healthy tissue, surface-disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA) medium, and incubated at 28°C (12-h light-dark cycle) for 3 days. Hyphal tips from recently germinated spores were transferred to PDA to obtain pure cultures. Nine fungal isolates with similar morphological characteristics were obtained. Colonies on PDA were villose, had a dense growth of aerial mycelia and appeared pinkish white from above and greyish orange at the center and pinkish-white at the margin on the underside. Macroconidia were smooth, and hyaline, with a dorsiventral curvature, hooked to tapering apical cells, and 3- to 5-septate. Three-septate macroconidia were 21.2 to 32.1 × 2.4 to 3.9 µm (mean ± SD: 26.9 ± 2.5 × 3.2 ± 0.4 µm, n = 30); 4-septate macroconidia were 29.5 to 38.9 × 3.0 to 4.3 µm (mean ± SD: 33.5 ± 2.6 × 3.6 ± 0.3 µm, n = 40); and 5-septate macroconidia were 39.3 to 55.6 × 4.0 to 5.4 µm (mean ± SD: 48.0 ± 3.9 × 4.5 ± 0.3 µm, n = 50). These morphological characteristics were consistent with F. ipomoeae, a member of the Fusarium incarnatum-equiseti species complex (FIESC) (Wang et al. 2019). To confirm the fungal isolate's identification, the genomic DNA of the single-spore isolate BJ-22.3 was extracted using the CTAB method (Guo et al. 2000). The internal transcribed space (ITS) region of rDNA, translation elongation factor-1 alpha (TEF-1α), and partial RNA polymerase second largest subunit (RPB2) were amplified using primer pairs [ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (O'Donnell et al. 1998), and 5f2/11ar (Liu, Whelen et al. 1999, Reeb, Lutzoni et al. 2004), respectively]. The ITS (MT939248), TEF-1α (MT946880), and RPB2 (MT946881) sequences of the BJ-22.3 isolate were deposited in GenBank. BLASTN analysis of these sequences showed over 99% nucleotide sequence identity with members of the FIESC: the ITS sequence showed 99.6% identity (544/546 bp) to F. lacertarum strain NRRL 20423 (GQ505682); the TEF-1α sequence showed 99.4% similarity (673/677 bp) to F. ipomoeae strain NRRL 43637 (GQ505664); and the RPB2 sequence showed 99.6% identity (1883/1901 bp) to F. equiseti strain GZUA.1657 (MG839492). Phylogenetic analysis using concatenated sequences of ITS, TEF-1α, and RPB2 showed that BJ-22.3 clustered monophyletically with strains of F. ipomoeae. Therefore, based on morphological and molecular characteristics, the isolate BJ-22.3 was identified as F. ipomoeae. To verify the F. ipomoeae isolate's pathogenicity, nine 1.5-year-old B. striata plants were inoculated with three 5 × 5 mm mycelial discs of strain BJ-22.3 from 4-day-old PDA cultures. Additionally, three control plants were inoculated with sterile PDA discs. The experiments were replicated three times. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 26°C for 14 days. Four days post-inoculation, leaf spot symptoms appeared on the inoculated leaves, while no symptoms were observed in control plants. Finally, F. ipomoeae was consistently re-isolated from leaf lesions from the infected plants. To our knowledge, this is the first report of F. ipomoeae causing leaf spot disease on B. striata in China. The spread of this disease might pose a serious threat to the production of B. striata. Growers should implement disease management to minimize the risks posed by this pathogen.

3.
Indian J Microbiol ; 54(1): 80-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24426171

RESUMEN

Enteroviruses are found in most environments and cause several diseases in humans. Loop-mediated isothermal amplification (LAMP) was adapted and evaluated for the rapid detection of enteroviruses. Based on the highly conserved 5' untranslated region (5'-UTR) of the human enteroviruses (HEVs), particularly human enterovirus A (HEV-A) and HEV-B, a set of universal primers was designed. The LAMP amplification was carried out under isothermal conditions at 61 °C, depending on the template concentration results were obtained within 45-90 min. The detection limits were found to be 10(1) copies of cloned enterovirus 71 fragments, more sensitive than conventional PCR. Nine water samples collected from drinking water sources during three seasons and 19 stool specimens collected from HFMD patients were analyzed. By using the LAMP assay, the majority of samples was tested positive, 9/9 (100 %) and 18/19 (94.7 %), respectively. LAMP is a practical method for the rapid detection of enteroviruses in environmental and clinical samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA