Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 5): 1134-1145, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120914

RESUMEN

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.

2.
Phys Chem Chem Phys ; 24(5): 2800-2812, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35048090

RESUMEN

The phenylalanine radical (Phe˙) has been proposed to mediate biological electron transport (ET) and exhibit long-lived electronic coherences following attosecond photoionization. However, the coupling of ultrafast structural reorganization to the oxidation/ionization of biomolecules such as phenylalanine remains unexplored. Moreover, studies of ET involving Phe˙ are hindered by its hitherto unobserved electronic spectrum. Here, we report the spectroscopic observation and coherent vibrational dynamics of aqueous Phe˙, prepared by sub-6 fs photodetachment of phenylalaninate anions. Sub-picosecond transient absorption spectroscopy reveals the ultraviolet absorption signature of Phe˙. Ultrafast structural reorganization drives coherent vibrational motion involving nine fundamental frequencies and one overtone. DFT calculations rationalize the absence of the decarboxylation reaction, a photodegradation pathway previously identified for Phe˙. Our findings guide the interpretation of future attosecond experiments aimed at elucidating coherent electron motion in photoionized aqueous biomolecules and pave way for the spectroscopic identification of Phe˙ in studies of biological ET.


Asunto(s)
Fenilalanina , Vibración , Electrones , Análisis Espectral , Agua
3.
ACS Nano ; 13(10): 12090-12099, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31518107

RESUMEN

Stand-off Raman spectroscopy combines the advantages of both Raman spectroscopy and remote detection to retrieve molecular vibrational fingerprints of chemicals at inaccessible sites. However, it is currently restricted to the detection of pure solids and liquids and not widely applicable for dispersed molecules in air. Herein, we realize real-time stand-off SERS spectroscopy for remote and multiplex detection of atmospheric airborne species by integrating a long-range optic system with a 3D analyte-sorbing metal-organic framework (MOF)-integrated SERS platform. Formed via the self-assembly of Ag@MOF core-shell nanoparticles, our 3D plasmonic architecture exhibits micrometer thick SERS hotspot to allow active sorption and rapid detection of aerosols, gas, and volatile organic compounds down to parts-per-billion levels, notably at a distance up to 10 m apart. The platform is highly sensitive to changes in atmospheric content, as demonstrated in the temporal monitoring of gaseous CO2 in several cycles. Importantly, we demonstrate the remote and multiplex quantification of polycyclic aromatic hydrocarbon mixtures in real time under outdoor daylight. By overcoming core challenges in current remote Raman spectroscopy, our strategy creates an opportunity in the long-distance and sensitive monitoring of air/gaseous environment at the molecular level, which is especially important in environmental conservation, disaster prevention, and homeland defense.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA