Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 170003, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218469

RESUMEN

Since the urban stormwater inlet (USI) acts as a link in the migration of microplastics (MPs) in stormwater, sufficient information on MPs in USI sediments is very important for understanding urban diffuse microplastic pollution. In this study, the abundance and characteristics of MPs in the USI sediments of Ma'anshan City, China, were analyzed based on urban land use type. MPs were prevalent in the USI sediments, with the average abundances of 536.77 ± 313.92 items·kg-1 for commercial areas, 505.64 ± 400.82 items·kg-1 for campuses, 694.71 ± 219.95 items·kg-1 for industrial areas, 526.41 ± 152.34 items·kg-1 for residential areas, and 1107.75 ± 422.10 items·kg-1 for main roads, indicating a high microplastic pollution in the USI sediments from main roads. The microplastic polymers were mainly polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS), accounting for 46.75 %-100.00 %, with PP MPs being the most abundant. Fiber MPs had the highest proportion in USI sediments from both campuses (35.30 %) and industrial areas (38.19 %), while film MPs were the most abundant for both commercial areas (39.91 %) and residential areas (35.65 %). The average proportions of fiber (27.29 %), fragment (29.18 %), and film (28.68 %) were almost equal for main roads, unlike other land use types. Except for campuses, transparent MPs were the most common for all land use types, with average proportions of 29.60 %-42.70 %. The proportions of MPs with sizes of <1000 µm were 72.54 % for commercial areas, 77.11 % for campuses, 76.05 % for industrial areas, 70.76 % for residential areas, and 74.29 % for main roads, respectively, with a consistent result with previous study that the MPs of <1000 µm are the predominant in the environment. This study enriches the knowledge of microplastic pollution in USI sediments and will benefit the mitigation of diffuse microplastic pollution.

2.
Environ Pollut ; 335: 122364, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580006

RESUMEN

The impact of the steel industry on sediment heavy metal (HM) pollution in urban aquatic environments was investigated in a major iron ore-producing area (Ma'anshan) in China. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 9.68 ± 3.56, 170.31 ± 82.40, 90.62 ± 19.54, 30.61 ± 6.72, 125.43 ± 63.60, and 1276.59 ± 701.90 mg/kg in the steel industry intruded upon sediments and 4.63 ± 1.41, 87.60 ± 10.96, 52.67 ± 19.99, 37.49 ± 6.17, 35.84 ± 11.41, and 189.02 ± 95.57 mg/kg in the control area, respectively. Comparing with the local soil background (0.08 mg/kg for Cd, 62.6 mg/kg for Cr, 19.3 mg/kg for Cu, 28.1 mg/kg for Ni, 26.0 mg/kg for Pb, and 58.0 mg/kg for Zn), significantly higher levels of Cd, Cr, Cu, Pb, and Zn were detected in the steel industry affected sediments. The enrichment factor and principal component analysis indicated that the heavy metals (HMs), except for Ni, were primarily derived from anthropogenic inputs, particularly from steel industrial activities. Multiple risk assessment models suggested that the sediments affected by industrial activities showed significant toxic effects for Cd, Cr, Pb, and Zn, with Cd being the main contributor to sediment toxicity. However, the alkaline nature of the sediments (pH = 7.85 ± 0.57) and the high proportion of residual fraction Cd (61.09% ± 26.64%) may help to reduce the toxic risks in the sediments. Effective measures to eliminate tinuous thethe continous input of Cd and Zn via surface runoff are crucial.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , Acero/análisis , Agua/análisis , Plomo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , China , Medición de Riesgo , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA