Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomed Sci ; 27(1): 92, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887585

RESUMEN

BACKGROUND: The Taiwan Human Disease iPSC Service Consortium was established to accelerate Taiwan's growing stem cell research initiatives and provide a platform for researchers interested in utilizing induced pluripotent stem cell (iPSC) technology. The consortium has generated and characterized 83 iPSC lines: 11 normal and 72 disease iPSC lines covering 21 different diseases, several of which are of high incidence in Taiwan. Whether there are any reprogramming-induced recurrent copy number variant (CNV) hotspots in iPSCs is still largely unknown. METHODS: We performed genome-wide copy number variant screening of 83 Han Taiwanese iPSC lines and compared them with 1093 control subjects using an Affymetrix genome-wide human SNP array. RESULTS: In the iPSCs, we identified ten specific CNV loci and seven "polymorphic" CNV regions that are associated with the reprogramming process. Additionally, we established several differentiation protocols for our iPSC lines. We demonstrated that our iPSC-derived cardiomyocytes respond to pharmacological agents and were successfully engrafted into the mouse myocardium demonstrating their potential application in cell therapy. CONCLUSIONS: The CNV hotspots induced by cell reprogramming have successfully been identified in the current study. This finding may be used as a reference index for evaluating iPSC quality for future clinical applications. Our aim was to establish a national iPSC resource center generating iPSCs, made available to researchers, to benefit the stem cell community in Taiwan and throughout the world.


Asunto(s)
Diferenciación Celular , Variaciones en el Número de Copia de ADN , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Reprogramación Celular , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Taiwán , Adulto Joven
2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-164118

RESUMEN

PURPOSE: In human subjects and animal models with acute and chronic lung injury, the bioactive lysophosphatidylcholine (LPC) is elevated in lung lining fluids. The increased LPC can promote an inflammatory microenvironment resulting in lung injury. Furthermore, pathological lung conditions are associated with upregulated phospholipase A2 (PLA2), the predominant enzyme producing LPC in tissues by hydrolysis of phosphatidylcholine. However, the lung cell populations responsible for increases of LPC have yet to be systematically characterized. The goal was to investigate the LPC generation by bronchial epithelial cells in response to pathological mediators and determine the major LPC species produced. METHODS: Primary human bronchial epithelial cells (NHBE) were challenged by vascular endothelial growth factor (VEGF) for 1 or 6 h, and condition medium and cells collected for quantification of predominant LPC species by high performance liquid chromatography-tandem mass spectrometry (LC-MS-MS). The cells were analyzed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for PLA2. The direct effects of LPC in inducing inflammatory activities on NHBE were assessed by transepithelial resistance as well as expression of interleukin-8 (IL-8) and matrix metalloproteinase-1 (MMP-1). RESULTS: VEGF stimulation of NHBE for 1 or 6 h, significantly increased concentrations of LPC16:0, LPC18:0, and LPC18:1 in condition medium compared to control. The sPLA2-selective inhibitor (oleyloxyethyl phosphorylcholine) inhibited the VEGF-induced release of LPC16:0 and LPC18:1 and PLA2 activity. In contrast, NHBE stimulated with TNF did not induce LPC release. VEGF did not increase mRNA of PLA2 subtypes sPLA2-X, sPLA2-XIIa, cPLA2-IVa, and iPLA2-VI. Exogenous LPC treatment increased expression of IL-8 and MMP-1, and reduced the transepithelial resistance in NHBE. CONCLUSIONS: Our findings indicate that VEGF-stimulated bronchial epithelial cells are a key source of extracellular LPCs, which can function as an autocrine mediator with potential to induce airway epithelial inflammatory injury.


Asunto(s)
Humanos , Células Epiteliales , Fosfolipasas A2 Grupo X , Hidrólisis , Interleucina-8 , Pulmón , Lesión Pulmonar , Lisofosfatidilcolinas , Espectrometría de Masas , Metaloproteinasa 1 de la Matriz , Modelos Animales , Fosfatidilcolinas , Fosfolipasas A2 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Mensajero , Factor A de Crecimiento Endotelial Vascular
3.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-164119

RESUMEN

PURPOSE: Asthma is a chronic inflammatory disease of the airways, and is associated with upregulation of phospholipase A2 (PLA2), the enzyme that hydrolyzes phosphatidylcholine, producing lysophosphatidylcholine (LPC) and free fatty acids. LPC is a lipid mediator with known pro-inflammatory and pro-atherogenic properties, and is believed to be a critical factor in cardiovascular diseases. We postulate that asthmatic subjects have an elevated content of LPC in the lung lining fluids. METHODS: Eight non-asthmatic controls and seven asthmatic subjects were recruited for broncho-alveolar lavage fluids (BALF) collection for analysis of LPC by high performance liquid chromatography-tandem mass spectrometry. RESULTS: LPC16:0 and LPC18:0 were significantly elevated in the BALF of asthmatics with impaired lung function characteristic of moderate asthma, but not mild asthma. The increased LPC content in BALF was accompanied by increased PLA2 activity. Furthermore, qRT-PCR analysis of the BALF cell fraction indicated increased secretory PLA2-X (sPLA2-X). CONCLUSIONS: The increased LPC content in the lung lining fluids is a potential critical lipid mediator in the initiation and/or progression of airway epithelial injury in asthma.


Asunto(s)
Asma , Enfermedades Cardiovasculares , Ácidos Grasos no Esterificados , Pulmón , Lisofosfatidilcolinas , Espectrometría de Masas , Fosfatidilcolinas , Fosfolipasas A2 , Irrigación Terapéutica , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA