RESUMEN
Porcine parvovirus (PPV) is a DNA virus that causes reproductive failure in gilts and sows, resulting in embryonic and fetal losses worldwide. Epitope mapping of PPV is important for developing new vaccines. In this study, we used spot synthesis analysis for epitope mapping of the capsid proteins of PPV (NADL-2 strain) and correlated the findings with predictive data from immunoinformatics. The virus was exposed to three conditions prior to inoculation in pigs: native (untreated), high hydrostatic pressure (350 MPa for 1 h) at room temperature and high hydrostatic pressure (350 MPa for 1 h) at - 18 °C, and was compared with a commercial vaccine produced using inactivated PPV. The screening of serum samples detected 44 positive spots corresponding to 20 antigenic sites. Each type of inoculated antigen elicited a distinct epitope set. In silico prediction located linear and discontinuous epitopes in B cells that coincided with several epitopes detected in spot synthesis of sera from pigs that received different preparations of inoculum. The conditions tested elicited antibodies against the VP1/VP2 antigen that differed in relation to the response time and the profile of structurally available regions that were recognized.
Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Parvovirus Porcino/inmunología , Animales , Antígenos Virales/química , Mapeo Epitopo , Epítopos/química , Masculino , Pruebas de Neutralización , Péptidos/genética , Péptidos/inmunología , PorcinosRESUMEN
The sterilization of transplant and medical devices should be effective but not detrimental to the structural properties of the materials used. In this study, we examined the effectiveness of chemical and physical agents for inactivating Staphylococcus aureus, a gram-positive bacterium and important cause of infections and biofilm production. The treatment conditions in this work were chosen to facilitate their subsequent use with sensitive materials. The effects of temperature, high hydrostatic pressure, and glutaraldehyde disinfectant on the growth of two strains of S. aureus (ATCC 25923 and BEC 9393) were investigated individually and/or in combinations. A low concentration of glutaraldehyde (0.5 mM), high hydrostatic pressure (300 MPa for 10 min), and moderate temperature (50 °C), when used in combination, significantly potentiated the inactivation of both bacterial strains by > 8 orders of magnitude. Transmission electron microscopy revealed structural damage and changes in area that correlated with the use of pressure in the presence of glutaraldehyde at room temperature in both strains. Biofilm from strain ATCC 25923 was particularly susceptible to inactivation. The conditions used here provided effective sterilization that can be applied to sensitive surgical devices and biomaterials, with negligible damage. The use of this experimental approach to investigate other pathogens could lead to the adoption of this procedure for sterilizing sensitive materials.