Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(3): 2084-2089, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36562266

RESUMEN

We report the fabrication of high-performance NO2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO2 molecules at sub-ppm level with a sensitivity of 0.15 ppm-1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (ΔHa < 0.1 eV) for NO2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring.

2.
Nanoscale ; 13(2): 1206-1212, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33404033

RESUMEN

In this paper we present a successful approach for the generation of partially fluorinated graphene structures. A computationally simple model optimized on a large density functional theory dataset quickly and precisely predicts experimentally observed structures. From the analysis of the structural diversity of fluorinated graphene in a wide range of synthesis temperatures, the general structural patterns are identified and the conditions for their achievement are determined. In addition, to facilitate further studies of fluorinated graphene, we present a ready-to-use GenCF code that implements the described structure generator.

3.
Sci Rep ; 8(1): 3566, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476169

RESUMEN

Using computational and theoretical approaches, we investigate the snap-through transition of buckled graphene membranes. Our main interest is related to the possibility of using the buckled membrane as a plate of capacitor with memory (memcapacitor). For this purpose, we performed molecular-dynamics (MD) simulations and elasticity theory calculations of the up-to-down and down-to-up snap-through transitions for membranes of several sizes. We have obtained expressions for the threshold switching forces for both up-to-down and down-to-up transitions. Moreover, the up-to-down threshold switching force was calculated using the density functional theory (DFT). Our DFT results are in general agreement with MD and analytical theory findings. Our systematic approach can be used for the description of other structures, including nanomechanical and biological ones, experiencing the snap-through transition.

5.
Sci Rep ; 7: 42356, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28195156

RESUMEN

Here, we demonstrate that stable conformations of graphene nanoribbons can be identified using pull and release experiments, when the stretching force applied to a single-layer graphene nanoribbon is suddenly removed. As it is follows from our numerical experiments performed by means of molecular dynamics simulations, in such experiments, favorable conditions for the creation of folded structures exist. Importantly, at finite temperatures, the process of folding is probabilistic. We have calculated the transition probabilities to folded conformations for a graphene nanoribbon of a selected size. Moreover, the ground state conformation has been identified and it is shown that its type is dependent on the nanoribbon length. We anticipate that the suggested pull and release approach to graphene folding may find applications in the theoretical studies and fabrication of emergent materials and their structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA