Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 196(5): 547-559, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525208

RESUMEN

A radiological/nuclear (RAD-NUC) incident, especially in an urban setting, results in diverse radiation-induced injuries due to heterogeneities in dose, the extent of partial-body shielding, human biodiversity and pre-existing health conditions. For example, acute radiation syndrome (ARS) can result in death within days to weeks of exposure to 0.7-10 Gy doses and is associated with destruction of the bone marrow, known as hematopoietic ARS (H-ARS). However, partial-body shielding that spares a portion of the bone marrow from exposure can significantly reduce the occurrence of H-ARS, but delayed effects of acute radiation exposure (DEARE) can still occur within months or years after exposure depending on the individual. In a mass casualty event, ideal triage must be able to pre-symptomatically identify individuals likely to develop radiation-induced injuries and provide an appropriate treatment plan. Today, while there are FDA approved treatments for hematopoietic ARS, there are no approved diagnosis for radiation injury and no approved treatments for the broad spectra of injuries associated with radiation. This has resulted in a major capability gap in the nations preparedness to a potentially catastrophic RAD-NUC event. Circulating microRNA (miRNA) are a promising class of biomarkers for this application because the molecules are accessible via a routine blood draw and are excreted by various tissues throughout the body. To test if miRNA can be used to predict distinct tissue-specific radiation-induced injuries, we compared the changes to the circulating miRNA profiles after total-body irradiation (TBI) and whole thorax lung irradiation (WTLI) in non-human primates at doses designed to induce ARS (day 2 postirradiation; 2-6.5 Gy) and DEARE (day 15 postirradiation; 9.8 or 10.7 Gy), respectively. In both models, miRNA sequences were identified that correlated with the onset of severe neutropenia (counts <500 µL-1; TBI) or survival (WTLI). This method identified panels of eleven miRNA for both model and assigned functional roles for the panel members using gene ontology enrichment analysis. A common signature of radiation-induced injury was observed in both models: apoptosis, DNA damage repair, p53 signaling, pro-inflammatory response, and growth factor/cytokine signaling pathways were predicted to be disrupted. In addition, injury-specific pathways were identified. In TBI, pathways associated with ubiquitination, specifically of histone H2A, were enriched, suggesting more impact to DNA damage repair mechanisms and apoptosis. In WTLI, pro-fibrotic pathways including transforming growth factor (TGF-ß) and bone morphogenetic protein (BMP) signaling pathways were enriched, consistent with the onset of late lung injury. These results suggest that miRNA may indeed be able to predict the onset of distinct types of radiation-induced injuries.


Asunto(s)
Síndrome de Radiación Aguda , Animales , MicroARN Circulante , Macaca mulatta , Masculino , Traumatismos Experimentales por Radiación
2.
Radiat Res ; 196(5): 510-522, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857299

RESUMEN

Thoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.8 or 10.7 Gy). Animals were observed for 270 days after WTLI. Approximately 58% of 9.8 Gy WTLI animals (7 of 12) and 94% of 10.7 Gy WTLI animals (15 out of 16) did not survive to the primary end point. Evidence of pulmonary fibrosis/pneumonitis was observed in all animals. Animals that received 10.7 Gy WTLI experienced more severe and early-onset pneumonitis, as indicated by reduced aerated lung volume, high non-sedated respiratory rate, earlier and more frequent dexamethasone treatments, and evidence of onset of heart disease. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days postirradiation, before the manifestation of symptoms, and included miRNA sequences known to regulate pathways associated with pulmonary fibrosis (TGF-ß/SMAD signaling) and pneumonitis/inflammation (p53 signaling). The abundance of several circulating miRNA differentially expressed at day 6 or 15, such as miR-199a-3p and miR-25-3p, correlated with statistically significant differences in survival. This study supports the hypothesis that it is feasible to use plasma miRNA profiles to identify individuals at high risk of organ-specific late radiation injury. These miRNA profiles could improve radiation oncology clinical practice and serve as biomarkers to predict who might develop late complications in the aftermath of a radiological or nuclear (RAD-NUC) incident.


Asunto(s)
Neumonitis por Radiación , Animales , Relación Dosis-Respuesta en la Radiación , Lesión Pulmonar , Macaca mulatta , Masculino , MicroARNs , Fibrosis Pulmonar , Traumatismos Experimentales por Radiación
3.
PLoS One ; 15(5): e0232411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392259

RESUMEN

Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-ß/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.


Asunto(s)
MicroARNs/genética , Traumatismos Experimentales por Radiación/genética , Neumonitis por Radiación/genética , Animales , MicroARN Circulante/sangre , MicroARN Circulante/genética , Femenino , Corazón/efectos de la radiación , Humanos , Pulmón/metabolismo , Pulmón/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/metabolismo , Miocardio/metabolismo , Modelos de Riesgos Proporcionales , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/metabolismo , Neumonitis por Radiación/sangre , Neumonitis por Radiación/metabolismo , Especificidad de la Especie , Distribución Tisular
4.
J Neurophysiol ; 114(4): 2376-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26289465

RESUMEN

We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología , Células Piramidales/fisiología , Canales de Sodio/metabolismo , Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Técnicas de Cultivo de Tejidos
5.
J Neurosci ; 33(38): 15011-21, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048831

RESUMEN

Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current-voltage curve was dominated by inward TTX-sensitive persistent sodium current (I(NaP)) that activated near -75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near -70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near -70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of I(NaP), which then depolarizes the cell from -70 mV to spike threshold. We quantified the relative contributions of I(NaP), hyperpolarization-activated cation current (I(h)), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of I(NaP) in a positive feedback loop starting near -70 mV and providing increasing inward current to threshold. These results show that the pacemaking "engine" from I(NaP) is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near -70 mV, as by muscarinic stimulation.


Asunto(s)
Relojes Biológicos/efectos de los fármacos , Región CA1 Hipocampal/citología , Colinérgicos/farmacología , Muscarina/farmacología , Células Piramidales/efectos de los fármacos , Canales de Sodio/fisiología , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Técnicas In Vitro , Masculino , Ratones , Níquel/farmacología , Técnicas de Placa-Clamp , Ácidos Fosfínicos/farmacología , Picrotoxina/farmacología , Propanolaminas/farmacología , Pirimidinas/farmacología , Quinoxalinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
6.
Cell ; 144(3): 389-401, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295699

RESUMEN

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Animales , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA