RESUMEN
Colorectal cancer is a widespread neoplasia with high ratios of chemoresistance. Phytochemicals in plant-based extracts could be useful to treat colorectal cancer, and/or reduce chemoresistance. Methanolic extract of avocado mesocarp (MEAM) has demonstrated antitumoral properties, depending on the fruit ripening stage (RS). The aim of this study was to analyze the effects of methanolic extracts of "Hass" avocado fruit at different RS on cytotoxicity, antioxidative, anti-inflammatory, anti-invasive, cell cycle, and epithelial-mesenchymal transition inhibition in colorectal adenocarcinoma cell line HT29. The MEAM showed an increasing concentration of total phenolic compounds as the RS progressed, which was correlated with antioxidant capacity measured by the Ferric Reducing Antioxidant Power assay but not with the 2.2-diphenyl-1-picrylhydrazyl assay. The specific phenolic compounds of MEAM were determined by high-performance liquid chromatography, and it was found that concentrations of epicatechin decreased while concentrations of chlorogenic acid increased as the RS progressed. The HT29 cell line was treated with MEAM for 48 h, and all MEAM had a cytotoxic effect, reported by MTT assay, nevertheless, the strongest effect was associated with the presence of chlorogenic acid. MEAM induced apoptosis and cell cycle arrest in phase G0/G1, reported by flow cytometry. Moreover, MEAM inhibited cell migration evidenced by the wound healing assay. On the other hand, MEAM significantly reduced expression of mRNA of tumor necrosis factor-alpha and cyclooxygenase 2. These effects comprise important inhibition of some hallmarks of cancer. This, in turn, may provide interesting guidelines for developing antitumoral intervention agents.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Persea , Humanos , Frutas/química , Antioxidantes/metabolismo , Persea/química , Metanol , Ácido Clorogénico/análisis , Extractos Vegetales/química , Células HT29 , Neoplasias Colorrectales/tratamiento farmacológicoRESUMEN
BACKGROUND: Avocado fruit is rich in xanthophylls, which have been related to positive effects on human health. Xanthophyl acetyltransferases (XATs) are enzymes catalyzing the esterification of carboxylic acids to the hydroxyl group of the xanthophyll molecule. This esterification is thought to increase the lipophilic nature of the xanthophyll and its stability in a lipophilic environment. Studies on XATs in fruits are very scarce, and no studies had been carried out in avocado fruit during postharvest. The objective of this work was to investigate the changes in the expression of genes encoding XAT, during avocado fruit ripening. RESULTS: Avocado fruits were obtained from a local market and stored at 15 °C for 8 days. The fruit respiration rate, ethylene production, and fruit peel's color space parameters (L*, a*, b*) were measured during storage. Fruit mesocarp samples were taken after 1, 3, 5, and 7 days of storage and frozen with liquid nitrogen. Total RNA was extracted from fruit mesocarp, and the quantification of the two genes designated as COGE_ID: 936743791 and COGE_ID: 936800185 encoding XATs was performed with real-time quantitative reverse transcription polymerase chain reaction using actin as a reference gene. The presence of a climacteric peak and large changes in color were recorded during postharvest. The two genes studied showed a large expression after 3 days of fruit storage. CONCLUSIONS: We conclude that during the last stages of ripening in avocado fruit there was an active esterification of xanthophylls with carboxylic acids, which suggests the presence of esterified xanthophylls in the fruit mesocarp. © 2024 Society of Chemical Industry.
Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Persea , Proteínas de Plantas , Persea/genética , Persea/crecimiento & desarrollo , Persea/metabolismo , Persea/química , Persea/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/enzimología , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Almacenamiento de Alimentos , Xantófilas/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismoRESUMEN
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg ß-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Asunto(s)
Antioxidantes , Passiflora , Antocianinas/análisis , Antocianinas/farmacología , Antiinflamatorios/análisis , Antiinflamatorios/farmacología , Antioxidantes/análisis , Carotenoides/análisis , Carotenoides/farmacología , Fibras de la Dieta/análisis , Frutas/química , Passiflora/química , Fitoquímicos/análisis , Fitoquímicos/farmacologíaRESUMEN
Andean Berry (Vaccinium meridionale Sw.) is a South American fruit rich in phytochemicals with promising anti-cancer properties as co-adjuvants to nonsteroidal anti-inflammatory drugs such as Aspirin. This study aimed to evaluate the antiproliferative potential of Andean Berry Juice (ABJ) in combination with Aspirin in human SW480 colon adenocarcinoma cells. ABJ primarily contained 3,4-dihydroxybenzoic and chlorogenic acids. The combined treatment of ABJ (IC50 : 30.0 ± 0.11%) and Aspirin (IC50 : 20.0 ± 0.57) exhibited a higher (p < .01) antiproliferative effect than each counterpart. Moreover the same mixture displayed a lower reduced glutathione/oxidized glutathione ratio (GSH/GSSG) than the untreated cells. ABJ-Aspirin combination induced late apoptosis stage without stimulating mitochondrial depolarization and prompted phosphatidylserine relocalization. These results emphasize the antiproliferative potential of bioactive compounds from ABJ and Aspirin combinations. PRACTICAL APPLICATIONS: Natural products such as Andean Berry (V. meridionale Sw.) juice (ABJ) contains antioxidant polyphenols that could reduce the need to use non-steroidal anti-inflammatory drugs, currently employed in cancer treatment, to prevent its side effects. The high abundance of polyphenols from this underutilized berry could stimulate the standardization of its production and industrial exploitation to be transformed into suitable food products delivering natural bioactive compounds with potential anti-cancer effects in vitro.
Asunto(s)
Adenocarcinoma , Vaccinium , Adenocarcinoma/tratamiento farmacológico , Aspirina , Colon , Frutas , HumanosRESUMEN
The physicochemical properties, including nutrient and bioactive compound compositions, in fruit of four creole avocados (CA) from Mexico were determined and compared with those of 'Hass' fruit. 'Hass' pulp and some CA pulps contained similar concentrations of lutein, chlorophyll a, ß-sitosterol and α-tocopherol. CA pulp contained 3.91-9.55% more oil than 'Hass'. Oil from CA pulp contained 10.10-26.79% more oleic acid than 'Hass' pulp. However, CA were small (CA = 81.40-137.15 g, 'Hass' = 188.59 g) and their pulp contents were low (CA = 39.83-84.82 g, 'Hass' = 144.14 g). CA peels were very thin, making these avocado peels edible but prone to mechanical damage. CA peels also contained higher concentrations and greater diversity of anthocyanins and glycosylated quercetin compounds than 'Hass' peels. Some CA were particularly rich in mannoheptulose and perseitol. Consumption of CA, including their peel, might result in higher intakes of some nutrients and bioactive compounds compared with 'Hass' avocados.
Asunto(s)
Frutas/metabolismo , Metabolómica , Persea/metabolismo , Antocianinas/metabolismo , Clorofila A/metabolismo , MéxicoRESUMEN
The peels of ripe fruit of 'Hass' and 'Hass' type (HT) avocado cultivars were evaluated for phytochemical composition and other attributes. Peels represented from 8.78 to 14.11% of fruit weight. Their color ranged from homogeneous black to black with very small greenish spots. The oil content in the peels was low. Twelve fatty acids were identified in peel oil and the ratio of unsaturated to saturated fatty acids suggested that peel oil might contribute to human health. The phytochemical composition varied significantly with cultivar. However, many HT peels were superior than 'Hass' peel in their content of α-tocopherol, ß-sitosterol, perseitol, and cyanidin-3-glucoside, which was up to 211.67, 45.92, 337.17, and 519.27% higher in HT peels, respectively. The content of some phenolic compounds, especially procyanidin B2 and epicatechin, was significantly lower in 'Hass' than in many HT peels. Few HT peels showed a higher content of carotenoids and chlorophyll than 'Hass' peels. Lutein was the most abundant carotenoid. Chlorophyll a and b were also abundant in peels and low concentrations of chlorophyll derivatives were observed. Avocado peels are an important source of bioactive compounds, including some carotenoids, acids, sterols, and volemitol, which were observed for the first time.
Asunto(s)
Persea , Clorofila A , Frutas/química , Humanos , Fenoles/análisis , FitoquímicosRESUMEN
Dried fruit pulp and oil from avocado fruit (Persea americana, Cv Hass) at five different ripening stages were digested in vitro to determine the bioaccessibility of several fat-soluble bioactive compounds (FSBC). Viscosity, particle size, ζ-potential and lipolysis were evaluated and related to the bioaccessibility of the tested compounds. Fatty acids were more bioaccessible than carotenoids and tocopherols. The viscosity of gastrointestinal medium was related to the initial fruit firmness and modulated the bioaccessibility of neoxanthin, violaxanthin, lutein and luteoxanthin, while particle size and ζ-potential influenced the bioaccessibility of fatty acids. Lipolysis degree highly altered the bioaccessibility of luteoxanthin, pheophytin b, and α-tocopherol indicating that these digestive events are highly involved in the bioaccessibility of FSBC. In summary, FSBC from avocado fruit are highly bioaccessible, but their bioaccessibility depends on fruit ripening stage and FSBC type and concentration.
Asunto(s)
Persea , Carotenoides , Ácidos Grasos , Frutas , TocoferolesRESUMEN
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Asunto(s)
Persea , Frutas/química , Fenoles/análisis , Fitoquímicos , Semillas/químicaRESUMEN
The genus Annona belongs to the family Annonaceae and includes several species of tropical and subtropical crops characterized by their edible and exotic fruits. Twenty species of Annona have been reported in Mexico, localized mainly in the tropical southeastern regions of the country. Most species, however, are not marketable and remain underutilized, and are often referred to as wild Annona species, but they are a valuable source of bioactive compounds. According to ethnobotanical evidence, extracts obtained from different Annona species and different parts of the plant (stem bark, leaves, roots, seeds, and peel) have been used in traditional medicine to treat various ailments. Most of their reported health benefits are attributed to the presence of bioactive compounds with various in vitro and in vivo biological activities, such as antidepressant, antidiabetic, neuroprotective, anticonvulsant, anti-inflammatory, antiproliferative, vasorelaxant, antipyretic, anti-ulcer, analgesic, and healing activities. Therefore, further extensive knowledge of these species especially information on their health benefits is essential to increase their cultivation and commercial use. The present review focuses on traditional uses of underutilized Annona species, their bioactive compounds content, and biological activities.
Asunto(s)
Annona , Frutas , Medicina Tradicional , México , SemillasRESUMEN
Fruit purees can be added to diet as alternative sources of bioactive compounds for the prevention and/or improvement of the complications of metabolic syndrome. In this work we evaluated the effect of the intake of low-fat diets enriched with fruit purees (guava-strawberry, guava-blackberry, guava-soursop, guava-passion fruit) on the body weight and biochemical markers in metabolic syndrome analogy (MSA)-induced rats. The rats (n=6 for each treatment) were induced with a high fat diet and were injected with streptozotocin, one dose every week for 4 consecutive weeks after fasting overnight, then healthy rats were fed with standard diet and MS rats were fed with standard diet plus each of the fruit puree, for 4 weeks. As novel findings, the diet enriched with fruit purees was associated with a reduction in body weight (~13-21 %) and a control in the metabolism of glucose by decreasing plasma glucose (~5963 %). Also, there was a reduction in the total cholesterol, triacylglycerols, low-density lipoproteins, and low enzymatic activities of alanine aminotransferase, alkaline phosphatase and γ-glutamyl transferase, useful metabolites in the control of inflammatory processes in the liver. A notable improvement in the liver morphology was observed indicating that the treatments had a hepatoprotective effect. The diet enriched with guava-blackberry puree caused the best results on most biochemical markers of MS rats. Therefore, diets enriched with fruit purees can be an alternative for MS individuals for the control and improvement of the complications caused by this syndrome.
Los purés de frutas se pueden agregar a la dieta como fuentes alternativas de compuestos bioactivos para la prevención y / o mejora de las complicaciones del síndrome metabólico. En este trabajo evaluamos el efecto de la ingesta de dietas bajas en grasas, enriquecidas con purés de frutas (guayaba-fresa, guayaba-mora, guayaba-guanábana, guayaba-maracuyá) sobre el peso corporal y los marcadores bioquímicos en el síndrome metabólico (SM) inducido en ratas. Las ratas (n = 6 para cada tratamiento) fueron inducidas con una dieta alta en grasas y se les inyectó estreptozotocina, una dosis cada semana durante 4 semanas consecutivas después de ayunar durante la noche. Luego, las ratas sanas fueron alimentadas con una dieta estándar; y las ratas con SM fueron alimentadas con dieta estándar más cada uno de los purés de frutas, durante 4 semanas. Como hallazgos novedosos, la dieta enriquecida con purés de frutas se asoció con una reducción en el peso corporal (~ 13-21 %) y un control en el metabolismo de la glucosa al disminuir la glucosa en plasma (~ 59-63 %). Además, hubo una reducción en el colesterol total, triacilgliceroles, lipoproteínas de baja densidad, y bajas actividades enzimáticas de alanina aminotransferasa, fosfatasa alcalina y gama-glutamil transferasa, metabolitos útiles en el control de los procesos inflamatorios en el hígado. Se observó una mejora notable en la morfología del hígado, lo que indica que los tratamientos tuvieron un efecto hepatoprotector. La dieta enriquecida con puré de guayaba y mora causó los mejores resultados en la mayoría de los marcadores bioquímicos de las ratas con SM. Por lo tanto, las dietas enriquecidas con purés de frutas pueden ser una alternativa para las personas con SM, para el control y la mejora de las complicaciones causadas por este síndrome.
Asunto(s)
Animales , Ratas , Dieta con Restricción de Grasas , Síndrome Metabólico , Frutas , Hígado/efectos de los fármacos , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Biomarcadores , Albúminas/análisis , Modelos Animales de Enfermedad , Fosfatasa Alcalina/análisis , Medicamentos Hepatoprotectores , Transaminasas/análisis , Lípidos/análisis , Hígado/químicaRESUMEN
Mango fruit has a high nutritional value and health benefits due to important components. The present manuscript is a comprehensive update on the composition of mango fruit, including nutritional and phytochemical compounds, and the changes of these during development and postharvest. Mango components can be grouped into macronutrients (carbohydrates, proteins, amino acids, lipids, fatty, and organic acids), micronutrients (vitamins and minerals), and phytochemicals (phenolic, polyphenol, pigments, and volatile constituents). Mango fruit also contains structural carbohydrates such as pectins and cellulose. The major amino acids include lysine, leucine, cysteine, valine, arginine, phenylalanine, and methionine. The lipid composition increases during ripening, particularly the omega-3 and omega-6 fatty acids. The most important pigments of mango fruit include chlorophylls (a and b) and carotenoids. The most important organic acids include malic and citric acids, and they confer the fruit acidity. The volatile constituents are a heterogeneous group with different chemical functions that contribute to the aromatic profile of the fruit. During development and maturity stages occur important biochemical, physiological, and structural changes affecting mainly the nutritional and phytochemical composition, producing softening, and modifying aroma, flavor, and antioxidant capacity. In addition, postharvest handling practices influence total content of carotenoids, phenolic compounds, vitamin C, antioxidant capacity, and organoleptic properties.
RESUMEN
Mixed oxide nanoparticles (MONs, TiO2-ZnO-MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA-DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480-500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2-ZnO (5%)-MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.
RESUMEN
Wild mushrooms are important for the diet of some communities in Mexico. However, limited information exists on their chemical composition, contribution to the diet, and health effects. We characterized seventeen wild mushroom species growing in the state of Queretaro in Central Mexico. Most species analyzed were edible, but also included nonedible, medicinal, poisonous and toxic specimens. Whole mushrooms (caps and stipes) were characterized for water content, color, and total content of phenolic compounds, flavonoids and anthocyanins. In vitro antioxidant capacity was measured by FRAP and DPPH assays. Phenolic compounds were identified and quantified by HPLC-mass spectrometry. All species analyzed were found to possess antioxidant activity in vitro and a wide range of phenolic and organic compounds were identified. Our results add to the limited information available on the composition and potential nutritional and health value of wild mushrooms. Further analyses of their bioactivities are warranted.
Asunto(s)
Agaricales/química , Antioxidantes/análisis , Flavonoides/análisis , Fenoles/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Espectrometría de Masas , México , Oxidación-Reducción , Fenoles/químicaRESUMEN
BACKGROUND: The effectiveness of hot air treatments in controlling decay and insects in mango fruit has been demonstrated and has usually been assessed as a function of the temperature of the heated air and the duration of the treatment. However, the contribution of the moisture content of the heated air has received little attention, especially with regard to fruit quality. In this study, mango fruits (cv. Manila) at mature-green stage were treated with moist (95% relative humidity (RH)) or dry (50% RH) hot forced air (43 °C, at 2.5 m s(-1) for 220 min) and then held at 20 °C for 9 days and evaluated periodically. RESULTS: The heating rate was higher with moist air. Treatments with moist and dry air did not cause injury to the fruit. Treatment with moist air temporarily slowed down color development, softening, weight loss and ß-carotene biosynthesis. This slowing down was clearly observed during the first 4-5 days at 20 °C. However, non-heated fruit and fruit heated with dry air showed similar quality at the end of storage. CONCLUSION: The moisture content of the heating air differentially modulated the postharvest ripening of 'Manila' mangoes. Moist air temporarily slowed down the ripening process of this mango cultivar.
Asunto(s)
Aire , Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Frutas/química , Calor , Mangifera/química , Agua , Color , Dieta , Frutas/normas , Humanos , Humedad , beta Caroteno/biosíntesisRESUMEN
Jalapeño peppers at intermediate ripening stages (IRS) are typically discarded at the packinghouse because they are not demanded for fresh consumption or industrial processing. These peppers have been scarcely studied in terms of pigment composition and bioactivity. In this study, the profile of pigments (carotenoids and chlorophylls) and antioxidant activity were determined in raw and heat-processed Jalapeño peppers at three IRS (brown, 50% red, and 75% red). Peppers contained 64 different pigments. Chlorophylls were the most abundant pigments in raw brown peppers while capsanthin was the most abundant at the other IRS. The content of most pigments decreased due to heat treatments. Several pheophytins and cis isomers of carotenoids were generated by heat processing. Boiling and grilling consistently decreased and increased the antioxidant activity of peppers, respectively. Tested peppers showed a more complex/abundant pigment content and higher antioxidant activity than those typically reported for green and red peppers.
Asunto(s)
Antioxidantes/química , Capsicum/química , Capsicum/crecimiento & desarrollo , Carotenoides/química , Clorofila/química , Verduras/química , Culinaria/métodos , Isomerismo , Xantófilas/químicaRESUMEN
In Mexico black cherry (Prunus serotina Ehrh.) fruits are consumed fresh, dried or prepared in jam. Considering the evidence that has linked intake of fruits and vegetables rich in polyphenols to cardiovascular risk reduction, the aim of this study was to characterize the phenolic profile of black cherry fruits and to determine their antioxidant, vasorelaxant and antihypertensive effects. The proximate composition and mineral contents of these fruits were also assessed. Black cherry fruits possess a high content of phenolic compounds and display a significant antioxidant capacity. High-performance liquid chromatography/mass spectrometric analysis indicated that hyperoside, anthocyanins and chlorogenic acid were the main phenolic compounds found in these fruits. The black cherry aqueous extract elicited a concentration-dependent relaxation of aortic rings and induced a significant reduction on systolic blood pressure in L-NAME induced hypertensive rats after four weeks of treatment. Proximate analysis showed that black cherry fruits have high sugar, protein, and potassium contents. The results derived from this study indicate that black cherry fruits contain phenolic compounds which elicit significant antioxidant and antihypertensive effects. These findings suggest that these fruits might be considered as functional foods useful for the prevention and treatment of cardiovascular diseases.
Asunto(s)
Antihipertensivos/química , Antioxidantes/química , Suplementos Dietéticos/análisis , Frutas/química , Extractos Vegetales/química , Prunus/química , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Flavonoides/química , Masculino , Espectrometría de Masas , Minerales/análisis , Minerales/química , Estructura Molecular , Fenoles/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , RatasRESUMEN
Raw and heat-processed (boiled and grilled) jalapeño peppers at three intermediate ripening stages (brown, 50% red, and 75% red) were digested in vitro without fat and in the presence of soybean oil (SO) or beef tallow (BT), and the micellarization of their lipid soluble pigments (LSP) was measured. The micelles from digestions with brown, 50% red, and 75% red peppers contained up to 27, 35, and 29 different LSP, respectively. Boiling and grilling decreased the micellarization of LSP from brown peppers, whereas the opposite was observed with 75% red peppers. Heat processing did not clearly affect the micellarization of LSP from 50% red fruits. The impact of fat on LSP micellarization was ripening-dependent, but the micellarization of the less polar carotenoids was always increased by SO or BT. This positive effect of fat was higher with SO than with BT.
Asunto(s)
Capsicum/química , Culinaria/métodos , Grasas/química , Pigmentos Biológicos/química , Verduras/química , Capsicum/crecimiento & desarrollo , Carotenoides/química , Frutas/química , Frutas/crecimiento & desarrollo , Calor , Verduras/crecimiento & desarrolloRESUMEN
The high diversity of carotenoids and chlorophylls in foods contrasts with the reduced number of pigments that typically are investigated in micellarization studies. In this study, pepper samples (raw and heat-treated) contained 68 individual pigments, but only 38 of them were micellarized after in vitro digestion. The micellarization of pigments was majorly determined by the interaction effect of processing style (food matrix effect) and fat type (saturated and unsaturated). The highest micellarization was observed with raw peppers. Unsaturated fat increased the micellarization of carotenoid esters, while the impact of fat on the micellarization of free carotenoids seemed to be dependent on pigment structure. The micellarization efficiency was diminished as the esterification level of carotenoids increased. The type of fatty acid moiety and the polarity of the carotenoids modulated their micellarization. Chlorophylls were transformed into pheophytins by heat-processing and digestion, with the pheophytins being stable under gastrointestinal conditions. Micellarization of pheophytins was improved by fat.
Asunto(s)
Capsicum/química , Grasas de la Dieta/metabolismo , Digestión , Frutas/química , Pigmentos Biológicos/metabolismo , Capsicum/crecimiento & desarrollo , Carotenoides/química , Carotenoides/metabolismo , Clorofila/química , Clorofila/metabolismo , Grasas de la Dieta/análisis , Grasas Insaturadas en la Dieta/análisis , Grasas Insaturadas en la Dieta/metabolismo , Manipulación de Alimentos , Frutas/crecimiento & desarrollo , Calor , Humanos , México , Micelas , Modelos Biológicos , Feofitinas/química , Feofitinas/metabolismo , Pigmentos Biológicos/química , SolubilidadRESUMEN
The effect of antifungal hot-water treatments (AHWT) at 55 °C for 0, 3, 6 and 9 min on quality attributes and cell-wall enzymatic activity during storage at 25 °C was investigated in papaya fruit. The total soluble solids (TSS), pH, titratable acidity (TA), firmness and fresh weight loss were not affected, whereas color on skin was negatively affected by the treatments of 6- and 9-min. However, the skin color was not different between the 3-min treated fruit and the untreated fruit during the storage. Decay was delayed and reduced by AHWT. We observed that the 3-min treatment of 55 °C did not affect softening and quality of papaya cv Maradol when applied as a pesticide-free treatment at color-break stage of papaya. PME (Pectinmethylesterase) and PG (Polygalacturonase) activities were not significantly affected by AHWT. We concluded that the AHWT did not affect the softening process from papaya pulp since the cell-wall enzyme activity (PME and PG) was not altered by treatments.
RESUMEN
Organic strawberry fruits (Cv. 'Albion') were harvested at six different ripening stages and evaluated for physical and chemical parameters. Biometrical characteristics and moisture content did not change significantly during ripening. Total soluble solids, pH and colour development increased while titratable acidity and fruit firmness decreased 14.7% and 91%, respectively. Fructose, glucose, and sucrose followed similar tendencies. Final contents of these sugars were 2323.4, 1988.5, and 1578.4 mg/100 g. Citric, malic, and ascorbic acids followed a descending, irregular, and increasing tendency during ripening, respectively. Final contents of these acids were 822.8, 245.8, and 78.1 mg/100 g. Total anthocyanins content (TAC) increased during ripening, while the opposite was observed for total phenolic content (TPC). TAC and TPC in ripe fruit were 56.4 mg/100g and 196 mg gallic acid equivalents (GAE)/100 g. Twenty eight phenolic compounds, mainly glycosides, were identified and quantified by HPLC-DAD-MS analysis. The concentration of these compounds was ripening dependent.