Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 8(4)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811339

RESUMEN

Ruminants sustain a long-lasting obligatory relationship with their rumen microbiome dating back 50 million years. In this unique host-microbiome relationship, the host's ability to digest its feed is completely dependent on its coevolved microbiome. This extraordinary alliance raises questions regarding the dependent relationship between ruminants' genetics and physiology and the rumen microbiome structure, composition, and metabolism. To elucidate this relationship, we examined the association of host genetics with the phylogenetic and functional composition of the rumen microbiome. We accomplished this by studying a population of 78 Holstein-Friesian dairy cows, using a combination of rumen microbiota data and other phenotypes from each animal with genotypic data from a subset of 47 animals. We identified 22 operational taxonomic units (OTUs) whose abundances were associated with rumen metabolic traits and host physiological traits and which showed measurable heritability. The abundance patterns of these microbes can explain high proportions of variance in rumen metabolism and many of the host physiological attributes such as its energy-harvesting efficiency. Interestingly, these OTUs shared higher phylogenetic similarity between themselves than expected by chance, suggesting occupation of a specific ecological niche within the rumen ecosystem. The findings presented here suggest that ruminant genetics and physiology are correlated with microbiome structure and that host genetics may shape the microbiome landscape by enriching for phylogenetically related taxa that may occupy a unique niche.IMPORTANCE Dairy cows are an essential nutritional source for the world's population; as such, they are extensively farmed throughout our planet and subsequently impact our environment. The microbial communities that reside in the upper digestive tract of these animals in a compartment named the rumen degrade and ferment the plant biomass that the animal ingests. Our recent efforts, as well as those of others, have shown that this microbial community's composition and functionality are tightly linked to the cow's capacity to harvest energy from its feed, as well as to other physiological traits. In this study, we identified microbial groups that are heritable and also linked to the cow's production parameters. This finding could potentially allow us to apply selection programs on specific rumen microbial components that are linked to the animal's physiology and beneficial to production. Hence, it is a steppingstone toward microbiome manipulation for increasing food availability while lowering environmental impacts such as methane emission.


Asunto(s)
Bacterias/genética , Metabolismo Energético , Microbioma Gastrointestinal/genética , Rumen/microbiología , Alimentación Animal , Animales , Biomasa , Bovinos , Femenino , Metagenoma , Metano/metabolismo , Filogenia , Análisis de Secuencia de ADN
2.
ISME J ; 10(12): 2958-2972, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27152936

RESUMEN

Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. Here we report the discovery that rumen microbiome components are tightly linked to cows' ability to extract energy from their feed, termed feed efficiency. Feed efficiency was measured in 146 milking cows and analyses of the taxonomic composition, gene content, microbial activity and metabolomic composition was performed on the rumen microbiomes from the 78 most extreme animals. Lower richness of microbiome gene content and taxa was tightly linked to higher feed efficiency. Microbiome genes and species accurately predicted the animals' feed efficiency phenotype. Specific enrichment of microbes and metabolic pathways in each of these microbiome groups resulted in better energy and carbon channeling to the animal, while lowering methane emissions to the atmosphere. This ecological and mechanistic understanding of the rumen microbiome could lead to an increase in available food resources and environmentally friendly livestock agriculture.


Asunto(s)
Bovinos/metabolismo , Bovinos/microbiología , Metabolismo Energético , Microbiota , Rumen/microbiología , Alimentación Animal/análisis , Animales , Femenino , Masculino , Metano/metabolismo , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA