Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
Biomaterials ; 313: 122764, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190941

RESUMEN

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Asunto(s)
Hidrógeno , Degeneración del Disco Intervertebral , Mitocondrias , Estrés Oxidativo , Hidrógeno/química , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración/efectos de los fármacos , Disco Intervertebral/efectos de los fármacos , Humanos , Mitofagia/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratas
2.
Int J Biol Macromol ; : 135506, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260640

RESUMEN

The beneficial effects of kelp polysaccharide (KPS) have recently attracted attention. In this study, KPS was extracted from kelp using the enzyme hydrolysis combined with freeze-drying, namely, KPS-EF. The structural characterization showed that KPS-EF was a highly sulfated macromolecule with the Mw of 764.2 kDa and the sulfate content of 23.49 %. The antiviral activity of KPS-EF in vitro was verified, and the IC50 value of KPS against the PR8 virus was 0.58 mg/mL. Intranasal administration of KPS-EF significantly inhibited death and weight loss in IAV-infected mice and alleviated virus-induced pneumonia symptoms, meanwhile, KPS-EF (10 mg/kg/day) significantly decreased the production levels of chemokines (CXCL1, RANTES) and inflammatory cytokines (IL-6, TNF-α) in lungs (p < 0.05). KPS-EF could downregulate the activity of viral neuraminidase (NA) primarily in the late stage of viral adsorption with an IC50 value of 0.29 mg/mL. This study provides a theoretical basis for the using KPS as a supplement to NA inhibitors or anti-influenza drugs.

3.
Water Res ; 266: 122346, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232256

RESUMEN

Due to the high moisture, strong hydrophilicity, and hard compressibility of sewage sludge (SS), it is difficult to realize the high-efficiency drying. Herein, a novel SS drying technology was developed to quickly and deeply reduce the moisture of SS from 75.6% to 38.5% in 1 h. During the process, secondary aluminum ash (SAA), a solid waste, was added to SS and acted as skeletons to form plenty of channels. Subsequently, NaOH was added and reacted with SAA to produce a lot of heat, resulting in a rapid temperature rise of the system from 20 to 105°C in 60 s. The heat could effectively remove water from these channels, which could be proved by the T1-T2 maps of in-site Low-Field 1H nuclear magnetic resonance. In addition, the extracellular polymeric substances were decomposed by SAA/NaOH successfully, and thus the SS became hydrophobic, favoring the drying. Finally, the dried SS could be used to fabricate unburned bricks. Thus, this work provides a promising method to realize the rapid SS deep drying and high-efficiency utilization of SAA and dried SS.

4.
Ecotoxicol Environ Saf ; 284: 116894, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154500

RESUMEN

BACKGROUND: Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS: The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS: Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95 % CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95 % CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS: Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.

5.
Stud Health Technol Inform ; 316: 853-857, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39176927

RESUMEN

Clinical notes contain valuable information for research and monitoring quality of care. Named Entity Recognition (NER) is the process for identifying relevant pieces of information such as diagnoses, treatments, side effects, etc., and bring them to a more structured form. Although recent advancements in deep learning have facilitated automated recognition, particularly in English, NER can still be challenging due to limited specialized training data. This exacerbated in hospital settings where annotations are costly to obtain without appropriate incentives and often dependent on local specificities. In this work, we study whether this annotation process can be effectively accelerated by combining two practical strategies. First, we convert usually passive annotation tasks into a proactive contest to motivate human annotators in performing a task often considered tedious and time-consuming. Second, we provide pre-annotations for the participants to evaluate how recall and precision of the pre-annotations can boost or deteriorate annotation performance. We applied both strategies to a text de-identification task on French clinical notes and discharge summaries at a large Swiss university hospital. Our results show that proactive contest and average quality pre-annotations can significantly speed up annotation time and increase annotation quality, enabling us to develop a text de-identification model for French clinical notes with high performance (F1 score 0.94).


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Humanos , Anonimización de la Información , Suiza
6.
Food Chem X ; 23: 101688, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39176039

RESUMEN

Multi-omics techniques were combined with microstructure, molecular sensory science and non-volatile matrices for the first time to investigate variations in organic macromolecules and flavor in caviar during preservation. After 4-6 weeks of storage, the peroxide value was 35.38 mg/g and the accumulation of thiobarbiturates was significant with caviar membranes exhibiting a decrease in elasticity and an increase in viscosity. Sixteen key volatile compounds were detected by GC-MS, while the volatile compounds that contributed to the differences in caviar flavor at different storage times were mainly tetradecane, (E)-2-hexenal, and heptanal. The pathways associated with flavor release during storage were mainly abundant in the linolenic acid metabolism, alanine metabolism, and glycerophospholipid metabolism pathways. The correlation of 11 differential proteins and 24 differential lipids with odorants was further explored, such as arginine, proline, alanine, PE (20:4/22:6), PE (16:1/18:2), and PE (20:5/18:2). Overall, Aspartate, glutamate, oleic acid, linoleic acid, and phospholipids enriched in C22:6 and C18:2 chains are potential metabolic markers. This study provides a basis from a multi-omics perspective for the investigation of the relationship between quality deterioration and precursor metabolism in caviar storage process.

7.
Food Chem X ; 23: 101612, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113737

RESUMEN

This study investigated the effect of low-voltage electrostatic field on the flavor quality changes and generation pathways of refrigerated sturgeon caviar. Research has found that after storage for 3-6 weeks, the physicochemical properties of caviar in the LVEF treatment group are better than those in the control group. The results of two-dimensional gas chromatography-time-of-flight mass spectrometry showed that the contents of hexanal, nonanal, (E,Z)-2,6-nonadienal, (E)-2-octenal and 1-octene-3-one related to the characteristic flavor of caviar (sweet, fruity and green) increased significantly. The lipidomics results indicated that the effects of LVEF on caviar mainly involve glycerophospholipid metabolism, linoleic acid metabolism, and α-Linolenic acid metabolism. Methanophosphatidylcholine (15:0/18:1), phosphatidylcholine (18:0/20:5), and phosphatidylcholine (18,1e/22:6) were significantly correlated with odor formation. Therefore, low-voltage electrostatic field treatment preserved the quality and enhanced the flavor of sturgeon caviar. This study provided a new theoretical basis for the preservation of sturgeon caviar.

8.
Front Microbiol ; 15: 1435078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091299

RESUMEN

Phytoplankton functional groups have been increasingly utilized in elucidating and predicting the response of phytoplankton species to environmental conditions and seasonal succession in various aquatic systems including lakes, rivers and reservoirs. However, it is still unclear whether the trait-based functional classification can be applied to spring-type lakes. To understand the temporal and spatial characteristics of phytoplankton functional groups and their responses to environmental factors in spring-type urban lake in northern China, an investigation was conducted in Daming Lake from May 2020 to September 2021. The findings revealed the identification of 98 phytoplankton taxa belonging to 6 phyla, predominantly being Chlorophyta (39.8%), Bacillariophyta (35.7%) and Cyanophyta (15.3%). The dominant species were Microcystis sp., Merismopedia minima, Synedra acus and Scenedesmus quadricauda. These phytoplankton taxa were categorized into 21 functional groups, with 6 dominant functional groups (abbreviated as D, MP, P, J, Lo, and W1). Among them, the functional group D, primarily constituted by S. acus, exhibited absolute predominance. The seasonal succession sequence of the dominant functional groups was as follows: D/P/J/MP/ Lo →→ D/P/W1/MP/Lo/J → D/P/J → D/MP → D/P/MP. Throughout the investigation period, the trophic level index (TLI) ranged from 39.10 to 71.13, and the Q index was from 1.91 to 2.91, both indicating a medium health state for Daming Lake, which was consistent with the evaluation results of the diversity index. The results of redundancy analysis revealed that the main driving factors of phytoplankton FG biomass and composition were water temperature (WT), total nitrogen (TN), transparency (SD), TN:TP (N:P), redox potential (ORP), chemical oxygen demand (CODMn) and pH. The dominance of the functional group D positively correlated with water temperature, TN, CODMn, pH and N:P but negatively correlated with SD. It was observed that functional groups and the Q index can objectively indicate the seasonal succession of phytoplankton and the water quality status of Daming Lake. Our discoveries have significant implications for the comprehension of the effects of urbanization on phytoplankton dynamics and for enhancing lake management practices to foster sustainable urban development.

9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125915

RESUMEN

Cashmere goats possess two types of hair follicles, with the secondary hair follicles producing valuable cashmere fiber used for textiles. The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. Transcription factors play crucial roles during this process. The transcription factor, cold-shock domain, containing C2 (Csdc2) plays a crucial role in modulating cell proliferation and differentiation. Our preceding research indicated that the expression of Csdc2 changes periodically during anagen to telogen. However, the mechanisms of Csdc2 in regulating SHF growth remain unclear. Here, we found that the knockdown of Csdc2 inhibits the proliferation of dermal papilla cells. ChIP-Seq analysis showed that Csdc2 had a unique DNA binding motif in SHFs. Through conjoint analysis of ChIP-Seq and RNA-Seq, we revealed a total of 25 candidate target genes of Csdc2. Notably, we discovered a putative Csdc2 binding site within roundabout guidance receptor 2 (Robo2) on chromosome 1 of the goat genome. Furthermore, qRT-PCR and dual-luciferase reporter assay confirmed Csdc2's positive regulatory influence on Robo2. These findings expand the research field of hair follicle transcriptional regulatory networks, offering insights into molecular breeding strategies to enhance cashmere production in goats.


Asunto(s)
Cabras , Folículo Piloso , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Folículo Piloso/metabolismo , Folículo Piloso/crecimiento & desarrollo , Proliferación Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Sitios de Unión
10.
Neural Netw ; 179: 106511, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39146718

RESUMEN

Recent image classification efforts have achieved certain success by incorporating prior information such as labels and logical rules to learn discriminative features. However, these methods overlook the variability of features, resulting in feature inconsistency and fluctuations in model parameter updates, which further contribute to decreased image classification accuracy and model instability. To address this issue, this paper proposes a novel method combining structural prior-driven feature extraction with gradient-momentum (SPGM), from the perspectives of consistent feature learning and precise parameter updates, to enhance the accuracy and stability of image classification. Specifically, SPGM leverages a structural prior-driven feature extraction (SPFE) approach to calculate gradients of multi-level features and original images to construct structural information, which is then transformed into prior knowledge to drive the network to learn features consistent with the original images. Additionally, an optimization strategy integrating gradients and momentum (GMO) is introduced, dynamically adjusting the direction and step size of parameter updates based on the angle and norm of the sum of gradients and momentum, enabling precise model parameter updates. Extensive experiments on CIFAR10 and CIFAR100 datasets demonstrate that the SPGM method significantly reduces the top-1 error rate in image classification, enhances the classification performance, and outperforms state-of-the-art methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Humanos , Aprendizaje Profundo
11.
Redox Biol ; 75: 103296, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39098263

RESUMEN

The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.


Asunto(s)
Animales Recién Nacidos , Hiperoxia , Macrófagos Alveolares , Femenino , Animales , Masculino , Macrófagos Alveolares/metabolismo , Ratones , Hiperoxia/metabolismo , Humanos , Transcriptoma , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/etiología , Caracteres Sexuales , Factores Sexuales , Modelos Animales de Enfermedad , Recién Nacido , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/etiología
12.
Food Funct ; 15(16): 8408-8417, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39040017

RESUMEN

Background: Previous studies on the association between diet quality and ovarian cancer (OC) survival are limited and inconsistent. We evaluated the relationship between pre- and post-diagnosis diet quality based on the Healthy Eating Index-2020 (HEI-2020), as well as their changes and OC survival. Methods: This prospective cohort study involved 1082 patients with OC aged 18-79 years, enrolled between 2015 and 2022. Detailed dietary intake before and after diagnosis was recorded using a validated food frequency questionnaire. Deaths were ascertained until February 16th, 2023 via medical records and active follow-up. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CI). Results: We included 549 OC cases with a median follow-up of 44.9 months, representing 206 total deaths. Higher HEI scores were associated with better OS (pre-diagnosis: HRT3 vs. T1 0.66, 95%CI: 0.46-0.93, HR1-SD 0.84, 95%CI: 0.73-0.96; post-diagnosis: HRT3 vs. T1 0.68, 95%CI: 0.49-0.96, HR1-SD 0.80, 95%CI: 0.69-0.92). Compared to the stable group, the group with decreased HEI scores (>3%) from pre- to post-diagnosis had worse OS (HR 1.93, 95%CI: 1.26-2.97). Conclusion: High pre- and post-diagnosis diet quality was associated with improved OC survival, whereas deterioration in diet quality after diagnosis was associated with decreased OC survival.


Asunto(s)
Dieta Saludable , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Neoplasias Ováricas/mortalidad , Anciano , Adolescente , Adulto Joven , Modelos de Riesgos Proporcionales
13.
Artículo en Inglés | MEDLINE | ID: mdl-39077370

RESUMEN

Adenine nucleotide translocator (ANT) is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane. It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm. The isoform ANT1 predominately expresses in cardiac and skeletal muscles. Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases. We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-deficient mice. Hearts and quadriceps resected from age-matched wild type (WT) and ANT1-deficient mice were snap-frozen in liquid nitrogen. The Chance redox scanner was utilized to perform 3D optical redox imaging. Each sample underwent scanning across 3-5 sections. Global averaging analysis showed no significant differences in the redox indices (NADH, flavin adenine dinucleotide containing-flavoproteins Fp, and the redox ratio Fp/(NADH+Fp) between WT and ANT1-deficient groups. However, quadriceps had higher Fp than hearts in both groups (p = 0.0004 and 0.01, respectively). Furthermore, the quadriceps were also more oxidized (a higher redox ratio) than hearts in WT group (p = 0.004). NADH levels were similar in all cases. Our data suggest that under non-stressful physical condition, the ANT1-deficient muscle cells were in the same mitochondrial state as WT ones and that the significant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-deficient ones. Redox imaging of muscles under physical stress can be conducted in future.

14.
ACS Appl Mater Interfaces ; 16(27): 34591-34606, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917296

RESUMEN

Immunotherapy has emerged as a revolutionizing therapeutic modality for cancer. However, its efficacy has been largely limited by a weak immune response and an immunosuppressive tumor microenvironment. Herein, we report a metal-organic framework (MOF)-derived titanium oxide nanoparticle (MCTx NP) as an immune booster that can greatly improve the immunotherapy efficacy by inducing "immunogenic cell death" (ICD) and remodeling the tumor microenvironment. The NPs, inheriting the characteristic structure of MIL-125 and enriched with oxygen vacancies (OVs), demonstrate both high photothermal conversion efficiency and a reactive oxygen species (ROS) generation yield upon near-infrared (NIR) activation. Moreover, the NPs can release O2 and reduce glutathione (GSH) in the tumor environment, showcasing their potential to reverse the immunosuppressive microenvironment. In vitro/vivo results demonstrate that MCTx NPs directly kill tumor cells and effectively eliminate primary tumors by exerting dual photodynamic/photothermal therapy under a single NIR irritation. At the same time, MCTx NPs augment the PD-L1 blockade efficacy by potently inducing ICDs and reversing the immunosuppressive tumor microenvironment, including promoting dendritic cell (DC) maturation, decreasing regulatory T cells (Tregs)' infiltration, and increasing cytotoxic T lymphocytes (CTLs) and helper T cells (Ths), resulting in effective distant tumor suppression. This work highlights MCTx NP-mediated photodynamic- and photothermal-enhanced immunotherapy as an effective strategy for tumor treatment.


Asunto(s)
Inmunoterapia , Estructuras Metalorgánicas , Oxígeno , Fotoquimioterapia , Titanio , Microambiente Tumoral , Titanio/química , Titanio/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Ratones , Humanos , Microambiente Tumoral/efectos de los fármacos , Oxígeno/química , Terapia Fototérmica , Nanopartículas/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química
15.
J Environ Manage ; 365: 121608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943751

RESUMEN

In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.


Asunto(s)
Cromo , Peróxido de Hidrógeno , Tetraciclina , Cromo/química , Tetraciclina/química , Peróxido de Hidrógeno/química , Catálisis , Hierro/química
16.
Mitochondrial DNA B Resour ; 9(6): 687-691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835639

RESUMEN

Arachis lutescens Krapov. & Rigoni 1958 is an important species due to their potentially extensive applications for cultivated peanut breeding. The whole chloroplast genome of A. lutescens was successfully assembled and annotated for the first time. The complete chloroplast genome of A. lutescens is a typically circular structure of 156,398 bp with a GC content of 36.3%. It comprises a large single-copy (LSC) region of 85,950 bp, a small single-copy (SSC) region of 18,800 bp, and two inverted repeat regions (IRs) of 25,824 bp, each. The plastome of A. lutescens contains a total of 125 genes, including 81 protein-coding genes, 36 tRNAs, and eight rRNAs. The phylogenetic analysis strongly supports the close relationship between A. lutescens and cultivated peanut clades. This study contributes to our understanding of the molecular characteristics and evolutionary relationships of this plant species.

17.
Acta Pharmacol Sin ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942954

RESUMEN

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

18.
Opt Express ; 32(11): 20119-20127, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859128

RESUMEN

Generating multiple beams in distinct polarization states is promising in multi-mode wireless communication but still remains challenging in metasurface design. Here, we theoretically and experimentally demonstrate a concept of broadband receiving-transmitting metasurface and its application to the generation of multi-polarization multi-beam. By employing U-slot patch, an efficient receiving-transmitting element with full phase coverage is designed within a wide bandwidth. Based on this architecture, a methodology is proposed to generate dual spin-decoupled beams and then developed into the strategy of generating multiple beams at different linear polarizations. To verify our strategy, two lens antennas, respectively radiating dual-spin dual-beam and quad-polarization quad-beam, are devised. With multi-polarization multi-beam radiated, the two lens antennas are both with whole aperture efficiency above 40% within the bandwidth of 10.6-12.3 GHz (14.8%), firmly validating our strategy and design.

19.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38790651

RESUMEN

Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD.

20.
Cell Biochem Biophys ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805113

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease worldwide. Macrophage polarization plays a substantial role in the pathogenesis of COPD. This study is aimed to explore the regulatory mechanism of regulator of telomere elongation 1 (RTEL1) in COPD. COPD model mouse was conducted by cigarette smoke (CS). The pathological features of lung in mice were observed by histological staining. After extracting exosomes, macrophages were co-cultured with fibroblasts-derived exosomes. Then, the effects of RTEL1 and exosomal secreted frizzled-related protein 2 (SFRP2) on macrophage proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization (iNOS and CD206) were evaluated by cell counting kit-8, EdU assay, enzyme-linked immuno sorbent assay, and western blotting, respectively. CS-induced COPD model mouse was successfully constructed. Through in vitro experiments, knockdown of RTEL1 inhibited macrophage proliferation, inflammation (MMP9, IL-1ß and TNF-α), and promoted apoptosis (Bax, cleaved-caspase3, Bcl-2) in CS extract-induced lung fibroblasts. Meanwhile, RTEL1 knockdown promoted M1 and suppressed M2 macrophage polarization in COPD. Additionally, silencing SFRP2 in fibroblasts-derived exosomes reversed the effects of RTEL1 knockdown on proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization. Collectively, down-regulation of RTEL1 improved M1/M2 macrophage polarization by promoting SFRP2 in fibroblasts-derived exosomes to alleviate CS-induced COPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA