Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 211: 542-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038263

RESUMEN

Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1µgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1µgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Iones Pesados , Metales Pesados/química , Shewanella/metabolismo , Electricidad , Electrodos , Transporte de Electrón , Electrones , Riboflavina/biosíntesis , Shewanella/crecimiento & desarrollo
2.
Bioresour Technol ; 197: 416-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26356112

RESUMEN

Microbial fuel cell (MFC) is considered as a promising green energy source and energy-saving pollutants treatment technology as it integrates pollutant biodegradation with energy extraction. In this work, a facile approach to enhance endogenous biosurfactant production was developed to improve the electron transfer rate and power output of MFC. By overexpression of rhlA, the key gene responsible for rhamnolipids synthesis, over-production of self-synthesized rhamnolipids from Pseudomonas aeruginosa PAO1 was achieved. Strikingly, the increased rhamnolipids production by rhlA overexpression significantly promoted the extracellular electron transfer of P. aeruginosa by enhancing electron shuttle (pyocyanin) production and increasing bacteria attachment on the anode. As a result, the strain with endogenously enhanced rhamnolipids production delivered 2.5 times higher power density output than that of the parent strain. This work substantiated that the enhancement on endogenous biosurfactant production could be a promising approach for improvement on the electricity output of MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Glucolípidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Electrodos , Transporte de Electrón , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética/métodos , Glucolípidos/genética , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Pseudomonas aeruginosa/genética , Piocianina/genética , Tensoactivos/metabolismo
3.
Biosens Bioelectron ; 56: 19-25, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24445069

RESUMEN

Microbial fuel cells (MFCs) are promising for harnessing bioenergy from various organic wastes. However, low electricity power output (EPT) is one of the major bottlenecks in the practical application of MFCs. In this study, EPT improvement by cofactor manipulation was explored in the Pseudomonas aeruginosa-inoculated MFCs. By overexpression of nadE (NAD synthetase gene), the availability of the intracellular cofactor pool (NAD(H/(+))) significantly increased, and delivered approximately three times higher power output than the original strain (increased from 10.86 µW/cm(2) to 40.13 µW/cm(2)). The nadE overexpression strain showed about a onefold decrease in charge transfer resistance and higher electrochemical activity than the original strain, which should underlie the power output improvement. Furthermore, cyclic voltammetry, HPLC, and LC-MS analysis showed that the concentration of the electron shuttle (pyocyanin) increased approximately 1.5 fold upon nadE overexpression, which was responsible for the enhanced electrochemical activity. Thus, the results substantiated that the manipulation of intracellular cofactor could be an efficient approach to improve the EPT of MFCs, and implied metabolic engineering is of great potential for EPT improvement.


Asunto(s)
Amida Sintasas/genética , Proteínas Bacterianas/genética , Fuentes de Energía Bioeléctrica/microbiología , Pseudomonas aeruginosa/fisiología , Amida Sintasas/metabolismo , Proteínas Bacterianas/metabolismo , Electricidad , Técnicas Electroquímicas , Ingeniería Metabólica , NAD/metabolismo , Pseudomonas aeruginosa/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA