RESUMEN
INTRODUCTION: Prior studies have found inconsistent results regarding the relationship between vitamin D status and Idiopathic Central Precocious Puberty (ICPP). OBJECTIVE: To assess the role of serum 25-hydroxyvitamin D (25 [OH]D) levels in ICPP development. METHOD: The authors retrospectively collected data from 221 girls with ICPP and 144 healthy girls between January 2017 and December 2019. The participants' serum 25(OH)D levels were measured using an automatic chemiluminescence method, and the association between serum 25(OH)D levels and the risk of ICPP was assessed using multivariate logistic regression analysis. Odds Ratios (OR) with 95% Confidence Intervals (95% CI) were calculated as effect estimates. RESULTS: Serum 25(OH)D levels in the ICPP group were significantly lower than those in healthy controls (p < 0.001). Multivariate analysis indicated that girls with insufficient vitamin D levels (OR = 0.201; 95% CI 0.094-0.428; p < 0.001) and sufficient vitamin D levels (OR = 0.141; 95% CI 0.053-0.375; p < 0.001) both had a lower risk of ICPP than girls with vitamin D deficiency. Moreover, the authors found that the height (p = 0.014), weight (p = 0.014), breast stage (p = 0.010), mother's height (p < 0.001), and luteinizing hormone/follicle-stimulating hormone ratio (p = 0.010) in girls with ICPP could be associated with levels of vitamin D. CONCLUSION: This study found that a low serum 25(OH)D level is an independent risk factor for ICPP, and several characteristics of girls with ICPP could be affected by their vitamin D status.
Asunto(s)
Pubertad Precoz , Femenino , Humanos , Estudios Retrospectivos , Vitamina D , Hormona Luteinizante , Vitaminas , Hormona Liberadora de GonadotropinaRESUMEN
Abstract Introduction Prior studies have found inconsistent results regarding the relationship between vitamin D status and Idiopathic Central Precocious Puberty (ICPP). Objective To assess the role of serum 25-hydroxyvitamin D (25 [OH]D) levels in ICPP development. Method The authors retrospectively collected data from 221 girls with ICPP and 144 healthy girls between January 2017 and December 2019. The participants' serum 25(OH)D levels were measured using an automatic chemiluminescence method, and the association between serum 25(OH)D levels and the risk of ICPP was assessed using multivariate logistic regression analysis. Odds Ratios (OR) with 95% Confidence Intervals (95% CI) were calculated as effect estimates. Results Serum 25(OH)D levels in the ICPP group were significantly lower than those in healthy controls (p < 0.001). Multivariate analysis indicated that girls with insufficient vitamin D levels (OR = 0.201; 95% CI 0.094-0.428; p < 0.001) and sufficient vitamin D levels (OR = 0.141; 95% CI 0.053-0.375; p < 0.001) both had a lower risk of ICPP than girls with vitamin D deficiency. Moreover, the authors found that the height (p = 0.014), weight (p = 0.014), breast stage (p = 0.010), mother's height (p < 0.001), and luteinizing hormone/follicle-stimulating hormone ratio (p = 0.010) in girls with ICPP could be associated with levels of vitamin D. Conclusion This study found that a low serum 25(OH)D level is an independent risk factor for ICPP, and several characteristics of girls with ICPP could be affected by their vitamin D status.
RESUMEN
ABSTRACT Purpose: To investigate the antiproliferative effect of carboplatin-loaded surface-modified poly(lactide-co-glycolide) on retinoblastoma cells. Methods: Carboplatin-loaded poly(lactide-co-glycolide) with or without sodium alginate surface modification was prepared using sodium alginate-poly(lactide-co-glycolide) and poly(lactide-co-glycolide). The zeta potential and carboplatin release behavior were investigated. The cellular uptake of the released drug was observed in the retinoblastoma cell line Y79. The inhibitory effect of carboplatin-loaded nanoparticles against the Y79 cell line was evaluated using methyl thiazolyl tetrazolium assay and western blot. Native carboplatin and void nanoparticles without carboplatin loading were used as controls. Results: The zeta potential was -(26.1 ± 3.1) mV for carboplatin-loaded poly(lactide-co-glycolide) and-(43.1 ± 8.1) mV for carboplatin-loaded sodium alginate-poly(lactide-co-glycolide). The burst release percentages of carboplatin-loaded poly(lactide-co-glycolide) and sodium alginate-poly(lactide-co-glycolide) were (40.0% ± 8.2%) and (18.9% ± 4.3%) at 24 hours, respectively. A significant difference was identified regarding drug release between carboplatin-loaded sodium alginate-poly(lactide-co-glycolide) and carboplatin-loaded poly(lactide-co-glycolide). Fluorescence detection revealed that intense uptake of carboplatin into the cytoplasm of the Y79 cell line that was exposed to carboplatin-loaded sodium alginate-poly(lactide-co-glycolide). Carboplatin-loaded poly(lactide-co-glycolide) or sodium alginate-poly(lactide-co-glycolide) exposure inhibited proliferating cell nuclear antigen expression in Y79 cells on day 3. Extension of exposure to day 5 revealed that the sodium alginate-poly(lactide-co-glycolide) surface modification was superior to that of poly(lactide-co-glycolide) in terms of proliferating cell nuclear antigen inhibition. The cell viability test using methyl thiazolyl tetrazolium revealed a similar inhibitory effect. Furthermore, the carboplatin-loaded nanoparticles of lower concentration inhibited cell viability more strongly than native carboplatin of higher concentration in methyl thiazolyl tetrazolium assay. Conclusions: Carboplatin-loaded sodium alginate-poly(lactide-co-glycolide) inhibited retinoblastoma cell proliferation with superior effect as compared with poly(lactide-co-glycolide) and native carboplatin. Sodium alginate surface modification offers a potential strategy for the sustained carboplatin release system.
RESUMO Objetivo: Investigar o efeito antiproliferativo de poli (lactídeo-coglicolídeo) com superfície modificada carregada com carboplatina contra células de retinoblastoma. Métodos: Preparou-se poli (lactídeo-co-glicolídeo) carregado com carboplatina com ou sem alginato de sódio para modifição da superfície, poli com alginato de sódio (lactídeo-co-glicolídeo) e poli (lactídeo-co-glicolídeo). O potencial zeta e o comportamento de liberação de carboplatina foram investigados. A captação celular do fármaco liberado foi observada na linha celular de retinoblastoma Y79. O efeito inibitório das nanopartículas carregadas com carboplatina contra a linha celular Y79 foi avaliado através do ensaio de metiltiazol tetrazólio e Western-blot. Carboplatina nativa e nanopartículas vazias sem carga de carboplatina serviram como controles. Resultados: O potencial zeta de poli carregado com carboplatina (lactídeo-co-glicolídeo) foi - (26,1 ± 3,1) mV versus - (43,1 ± 8,1) mV em poli com alginato de sódio carregado com carboplatina (lactídeo-co-glicolídeo). A percentagem de libertação de explosão de poli carregado com carboplatina (lactídeo-co-glicolídeo) e poli com alginato de sódio (lactídeo-co-glicolídeo) foram (40,0 ± 8,2)% e (18,9 ± 4,3)% às 24 horas, respectivamente. Uma diferença significativa foi identificada em relação à liberação de fármaco entre poli com alginato de sódio carregado com carboplatina (lactídeo-co-glicolídeo) e poli carregado com carboplatina (lactídeo-co-glicolídeo). A detecção de fluorescência revelou que a carboplatina foi assimilada intensamente no citoplasma da linha celular Y79 que foi exposta ao poli com alginato de sódio carregado com carboplatina (lactídeo-co-glicolídeo). A exposição de poli carregada com carboplatina (lactídeo-co-glicolídeo) ou poli com alginato de sódio (lactídeo-co-glicolídeo) inibiu a expressão de antígeno nuclear de proliferação celular em células Y79 no 3º dia. A extensão da exposição no 5º dia revelou que poli com alginato de sódio (lactídeo-co-glicolídeo) para modificação da superfície foi superior a poli (lactídeo-co-glicolídeo) em termos de inibição do antígeno nuclear de proliferação celular. O teste de viabilidade celular via metiltiazol tetrazólio mostrou um efeito inibitório semelhante. Além disso, as nanopartículas carregadas com carboplatina de concentração mais baixa inibiram a viabilidade celular mais fortemente em comparação com a carboplatina nativa de concentração mais alta no ensaio de metiltiazol tetrazólio. Conclusões: Poli com alginato de sódio carregado com carboplatina (lactídeo-co-glicolídeo) inibiu a proliferação de células de retinoblastoma com efeito superior em contraste com poli (lactídeo-co-glicolídeo) e carboplatina nativa. O alginato de sódio para modificação da superfície oferece uma estratégia potencial para o sistema de liberação de carboplatina sustentada.
RESUMEN
PURPOSE: To investigate the antiproliferative effect of carboplatin-loaded surface-modified poly(lactide-co-glycolide) on retinoblastoma cells. METHODS: Carboplatin-loaded poly(lactide-co-glycolide) with or without sodium alginate surface modification was prepared using sodium alginate-poly(lactide-co-glycolide) and poly(lactide-co-glycolide). The zeta potential and carboplatin release behavior were investigated. The cellular uptake of the released drug was observed in the retinoblastoma cell line Y79. The inhibitory effect of carboplatin-loaded nanoparticles against the Y79 cell line was evaluated using methyl thiazolyl tetrazolium assay and western blot. Native carboplatin and void nanoparticles without carboplatin loading were used as controls. RESULTS: The zeta potential was -(26.1 ± 3.1) mV for carboplatin-loaded poly(lactide-co-glycolide) and-(43.1 ± 8.1) mV for carboplatin-loaded sodium alginate-poly(lactide-co-glycolide). The burst release percentages of carboplatin-loaded poly(lactide-co-glycolide) and sodium alginate-poly(lactide-co-glycolide) were (40.0% ± 8.2%) and (18.9% ± 4.3%) at 24 hours, respectively. A significant difference was identified regarding drug release between carboplatin-loaded sodium alginate-poly(lactide-co-glycolide) and carboplatin-loaded poly(lactide-co-glycolide). Fluorescence detection revealed that intense uptake of carboplatin into the cytoplasm of the Y79 cell line that was exposed to carboplatin-loaded sodium alginate-poly(lactide-co-glycolide). Carboplatin-loaded poly(lactide-co-glycolide) or sodium alginate-poly(lactide-co-glycolide) exposure inhibited proliferating cell nuclear antigen expression in Y79 cells on day 3. Extension of exposure to day 5 revealed that the sodium alginate-poly(lactide-co-glycolide) surface modification was superior to that of poly(lactide-co-glycolide) in terms of proliferating cell nuclear antigen inhibition. The cell viability test using methyl thiazolyl tetrazolium revealed a similar inhibitory effect. Furthermore, the carboplatin-loaded nanoparticles of lower concentration inhibited cell viability more strongly than native carboplatin of higher concentration in methyl thiazolyl tetrazolium assay. CONCLUSIONS: Carboplatin-loaded sodium alginate-poly(lactide-co-glycolide) inhibited retinoblastoma cell proliferation with superior effect as compared with poly(lactide-co-glycolide) and native carboplatin. Sodium alginate surface modification offers a potential strategy for the sustained carboplatin release system.