Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med Imaging ; 24(1): 220, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160488

RESUMEN

BACKGROUND: Pneumoconiosis has a significant impact on the quality of patient survival. This study aims to evaluate the performance and application value of improved Unet network technology in the recognition and segmentation of lesion areas of lung CT images in patients with pneumoconiosis. METHODS: A total of 1212 lung CT images of patients with pneumoconiosis were retrospectively included. The improved Unet network was used to identify and segment the CT image regions of the patients' lungs, and the image data of the granular regions of the lungs were processed by the watershed and region growing algorithms. After random sorting, 848 data were selected into the training set and 364 data into the validation set. The experimental dataset underwent data augmentation and were used for model training and validation to evaluate segmentation performance. The segmentation results were compared with FCN-8s, Unet network (Base), Unet (Squeeze-and-Excitation, SE + Rectified Linear Unit, ReLU), and Unet + + networks. RESULTS: In the segmentation of lung CT granular region with the improved Unet network, the four evaluation indexes of Dice similarity coefficient, positive prediction value (PPV), sensitivity coefficient (SC) and mean intersection over union (MIoU) reached 0.848, 0.884, 0.895 and 0.885, respectively, increasing by 7.6%, 13.3%, 3.9% and 6.4%, respectively, compared with those of Unet network (Base), and increasing by 187.5%, 249.4%, 131.9% and 51.0%, respectively, compared with those of FCN-8s, and increasing by 14.0%, 31.2%, 4.7% and 9.7%, respectively, compared with those of Unet network (SE + ReLU), while the segmentation performance was also not inferior to that of the Unet + + network. CONCLUSIONS: The improved Unet network proposed shows good performance in the recognition and segmentation of abnormal regions in lung CT images in patients with pneumoconiosis, showing potential application value for assisting clinical decision-making.


Asunto(s)
Neumoconiosis , Tomografía Computarizada por Rayos X , Humanos , Neumoconiosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Masculino , Pulmón/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Femenino , Algoritmos , Persona de Mediana Edad , Anciano , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA