Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(25): 17138-17146, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19383603

RESUMEN

Mitochondrial F(1)-ATPase contains a hexamer of alternating alpha and beta subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to beta and alpha. In the absence of Atp11p and Atp12p, the hexamer is not formed, and alpha and beta precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F(1) assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486-1493) hypothesized that the chaperones themselves look very much like the alpha and beta subunits, and proposed an exchange of Atp11p for alpha and of Atp12p for beta; the driving force for the exchange was expected to be a higher affinity of alpha and beta for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to beta and Atp12p is bound to alpha, the two F(1) subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to alpha and beta prevents further interactions between these F(1) subunits. However, Atp11p and Atp12p do not resemble alpha or beta, and it is instead the F(1) gamma subunit that initiates the release of the chaperones from alpha and beta and their further assembly into the mature complex.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Cristalografía por Rayos X , Cartilla de ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
2.
Biochemistry ; 48(16): 3610-30, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19228070

RESUMEN

Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cadmio/química , Cobre/química , Zinc/química , Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación Proteica
3.
Biochemistry ; 46(15): 4532-44, 2007 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-17381075

RESUMEN

There are two classes of KDO8P synthases characterized respectively by the presence or absence of a metal in the active site. The nonmetallo KDO8PS from Escherichia coli and the metallo KDO8PS from Aquifex aeolicus are the best characterized members of each class. All amino acid residues that make important contacts with the substrates are conserved in both enzymes with the exception of Pro-10, Cys-11, Ser-235, and Gln-237 of the A. aeolicus enzyme, which correspond respectively to Met-25, Asn-26, Pro-252, and Ala-254 in the E. coli enzyme. Interconversion between the two forms of KDO8P synthases can be achieved by substituting the metal-coordinating cysteine of metallo synthases with the corresponding asparagine of nonmetallo synthases, and vice versa. In this report we describe the structural changes elicited by the C11N mutation and by three combinations of mutations (P10M/C11N, C11N/S235P/Q237A, and P10M/C11N/S235P/Q237A) situated along possible evolutionary paths connecting the A. aeolicus and the E. coli enzyme. All four mutants are not capable of binding metal and lack the structural asymmetry among subunits with regard to substrate binding and conformation of the L7 loop, which is typical of A. aeolicus wild-type KDO8PS but is absent in the E. coli enzyme. Despite the lack of the active site metal, the mutant enzymes display levels of activity ranging from 46% to 24% of the wild type. With the sole exception of the quadruple mutant, metal loss does not affect the thermal stability of KDO8PS. The free energy of unfolding in water is also either unchanged or even increased in the mutant enzymes, suggesting that the primary role of the active site metal in A. aeolicus KDO8PS is not to increase the enzyme stability. In all four mutants A5P binding displaces a water molecule located on the si side of PEP. In particular, in the double and triple mutant, A5P binds with the aldehyde carbonyl in hydrogen bond distance of Asn-11, while in the wild type this functional group points away from Cys-11. This alternative conformation of A5P is likely to have functional significance as it resembles the conformation of the acyclic reaction intermediate, which is observed here for the first time in some of the active sites of the triple mutant. The direct visualization of this intermediate by X-ray crystallography confirms earlier mechanistic models of KDO8P synthesis. In particular, the configuration of the C2 chiral center of the intermediate supports a model of the reaction in nonmetallo KDO8PS, in which water attacks an oxocarbenium ion or PEP from the si side of C2. Several explanations are offered to reconcile this observation with the fact that no water molecule is observed at this position in the mutant enzymes in the presence of both PEP and A5P. Significant differences were observed between the wild-type and the mutant enzymes in the Km values for PEP and A5P and in the Kd values for inorganic phosphate and R5P. These differences may reflect an evolutionary adaptation of metallo and nonmetallo KDO8PS's to the cellular concentrations of these metabolites in their respective hosts.


Asunto(s)
Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Estabilidad de Enzimas , Cinética , Metales/metabolismo , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato/metabolismo , Unión Proteica/genética , Especificidad por Sustrato
4.
Biochemistry ; 44(37): 12434-44, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16156656

RESUMEN

KDO8P synthase catalyzes the condensation of arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to form the 8-carbon sugar KDO8P and inorganic phosphate (P(i)). The X-ray structure of the wild-type enzyme shows that when both PEP and A5P bind, the active site becomes isolated from the environment due to a conformational change of the L7 loop. The structures of the R106G mutant, without substrates, and with PEP and PEP plus A5P bound, were determined and reveal that in R106G closure of the L7 loop is impaired. The structural perturbations originating from the loss of the Arg(106) side chain point to a role of the L2 loop in stabilizing the closed conformation of the L7 loop. Despite the increased exposure of the R106G active site, no abnormal reaction of PEP with water was observed, ruling out the hypothesis that the primary function of the L7 loop is to shield the active site from bulk solvent during the condensation reaction. However, the R106G enzyme displays several kinetic abnormalities on both the substrate side (smaller K(m)(PEP), larger K(i)(A5P) and K(m)(A5P)) and the product side (smaller K(i)(Pi) and K(i)(KDO8P)) of the reaction. As a consequence, the mutant enzyme is less severely inhibited by A5P and more severely inhibited by P(i) and KDO8P. Simulations of the flux of KDO8P synthesis under metabolic steady-state conditions (constant concentration of reactants and products over time) suggest that in vivo R106G is expected to perform optimally in a narrower range of substrate and product concentrations than the wild-type enzyme.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Bacterias/enzimología , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Microbiol Immunol ; 47(12): 937-43, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14695443

RESUMEN

We cloned a gene responsible for norfloxacin resistance from the chromosomal DNA of Haemophilus influenzae Rd, and designated the gene as hmrM. HmrM showed sequence similarity with NorM of Vibrio parahaemolyticus and YdhE of Escherichia coli and others that belong to the MATE family multidrug efflux pumps. The recombinant plasmid carrying the hmrM gene conferred elevated resistance not only to norfloxacin but also to acriflavine, 4 ', 6-diamidino-2-phenylindole, doxorubicin, ethidium bromide, tetraphenylphosphonium chloride, Hoechst 33342, daunomycin, berberine, and sodium deoxycholate in Escherichia coli KAM32, a drug-hypersensitive strain. We observed an Na+-dependent efflux of ethidium and an ethidium-induced efflux of Na+ in E. coli KAM32 cells harboring the plasmid carrying the hmrM gene. These results indicate that HmrM is an Na+/drug antiporter-type multidrug efflux pump. A difference in substrate preference was observed between HmrM, NorM, and YdhE.


Asunto(s)
Antiinfecciosos/farmacología , Antiportadores/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli , Haemophilus influenzae/genética , Norfloxacino/farmacología , Antiinfecciosos/metabolismo , Antiportadores/metabolismo , Antiportadores/fisiología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico Activo , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Etidio/metabolismo , Genes Bacterianos , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/metabolismo , Norfloxacino/metabolismo , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Homología de Secuencia de Aminoácido , Cloruro de Sodio/metabolismo , Especificidad por Sustrato
6.
Drug Des Discov ; 18(2-3): 91-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14675946

RESUMEN

3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) is the phosphorylated precursor of KDO, an essential sugar of the lipopolysaccharide of Gram negative bacteria. KDO8P is produced by a specific synthase (KDO8PS) by condensing arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP), with release of inorganic phosphate. As KDO8PS is present in bacteria and plants, but not in mammalian cells, and mutations that inactivate KDO8PS also block cell replication, KDO8PS is a promising target for the design of new antimicrobials that act by blocking lipopolysaccharide biosynthesis. Previous studies have shown that a compound mimicking an intermediate of the condensation reaction is a good ligand and a powerful inhibitor. Here we report on the crystallographic investigation of the binding to KDO8PS of new derivatives of this original inhibitor. The structures of the enzyme in complex with these compounds, and also with the PEP analogs, 2-phosphoglyceric acid (2-PGA) and Z-methyl-PEP, point to future strategies for the design of novel inhibitors of KDO8PS.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/química , Sitios de Unión , Cristalografía por Rayos X , Ácidos Glicéricos/química , Bacterias Gramnegativas/química , Modelos Moleculares , Fosfoenolpiruvato/análogos & derivados , Fosfoenolpiruvato/química , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad , Azúcares Ácidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA