Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
2.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39211175

RESUMEN

Gastric cancer is the fifth most common cancer and the fifth leading cause of cancer deaths worldwide. Chronic infection by the bacterium Helicobacter pylori is the most prominent gastric cancer risk factor, but only 1-3% of infected individuals will develop gastric cancer. Cigarette smoking is another independent gastric cancer risk factor, and H. pylori- infected smokers are at a 2-11-fold increased risk of gastric cancer development, but the direct impacts of cigarette smoke on H. pylori pathogenesis remain unknown. In this study, male C57BL/6 mice were infected with H. pylori and began smoking within one week of infection. The mice were exposed to cigarette smoke (CS) five days/week for 8 weeks. CS exposure had no notable impact on gross gastric morphology or inflammatory status compared to filtered-air (FA) exposed controls in mock-infected mice. However, CS exposure significantly blunted H. pylori- induced gastric inflammatory responses, reducing gastric atrophy and pyloric metaplasia development. Despite blunting these classic pathological features of H. pylori infection, CS exposures increased DNA damage within the gastric epithelial cells and accelerated H. pylori- induced dysplasia onset in the INS-GAS gastric cancer model. These data suggest that cigarette smoking may clinically silence classic clinical symptoms of H. pylori infection but enhance the accumulation of mutations and accelerate gastric cancer initiation.

3.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G531-G544, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041676

RESUMEN

Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with H. pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric H. pylori immunity.NEW & NOTEWORTHY Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to Helicobacter pylori infection.


Asunto(s)
Glucocorticoides , Infecciones por Helicobacter , Helicobacter pylori , Activación de Macrófagos , Macrófagos , Ratones Noqueados , Receptores de Glucocorticoides , Animales , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Glucocorticoides/farmacología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Transducción de Señal
4.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953252

RESUMEN

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Asunto(s)
Fertilidad , Espermatogonias , Testículo , Animales , Masculino , Ratones , Diferenciación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética , Ratones Noqueados , Estabilidad del ARN/genética , Células de Sertoli/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Espermatogonias/citología , Testículo/metabolismo
5.
Gels ; 10(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920920

RESUMEN

Calcareous sands often display wide ring grain configurations, high intragranular porosity, a complex structure, and low grain hardness. These attributes typically do not meet the strength criteria necessary to sustain overlying infrastructure in civil engineering applications. This study investigates gel stabilization techniques, blending gel material with calcareous sand at concentrations ranging from 5% to 22%, followed by curing periods of 3 to 28 days to evaluate the load-bearing capacity. Subsequently, an unconfined compressive test is performed to determine the gel material content in stabilized specimens and investigate the influence of gel material types. The gel material-to-sand ratios employed are set at 5%, 10%, and 16% for Portland cement and 13%, 16%, and 22% for gypsum. After that, a triaxial consolidated undrained test is conducted to assess mechanical behavior, pore water pressure, and mechanical properties. The findings reveal increased dilation, stress-strain hardening, and softening post-yield, regardless of gel material type. Principal stress ratios, secant modulus, and cohesion show a positive correlation with maintenance duration and binder content, with implications for improved load-bearing capacity. The study also elucidates the qualitative relationship between secant modulus E50 and confining pressure.

6.
Clin Proteomics ; 21(1): 32, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735925

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS: Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.

7.
Chin Med J (Engl) ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816396

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated. METHODS: We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (three each from CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. RESULTS: Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. CONCLUSIONS: Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

8.
J Appl Physiol (1985) ; 136(4): 908-916, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385185

RESUMEN

The six cylinder thermoregulatory model (SCTM) has been validated thoroughly for resting humans. This type of modeling is helpful to predict and develop guidance for safe performance of work and recreational activities. In the context of a warming global climate, updating the accuracy of the model for intense exercise in warm environments will help a wide range of individuals in athletic, recreational, and military settings. Three sets of previously collected data were used to determine SCTM accuracy. Dataset 1: two groups [large (LG) 91.5 kg and small (SM) 67.7 kg] of individuals performed 60 min of semirecumbent cycling in temperate conditions (25.1°C) at metabolic rates of 570-700 W. Dataset 2: two LG (100 kg) and SM (65.8 kg) groups performed 60 min of semirecumbent cycling in warm/hot environmental conditions (36.2°C) at metabolic rates of 590-680 W. Dataset 3: seven volunteers completed 8-km track trials (∼30 min) in cool (17°C) and warm (30°C) environments. The volunteers' metabolic rates were estimated to be 1,268 W and 1,166 W, respectively. For all datasets, SCTM-predicted core temperatures were found to be similar to the observed core temperatures. The root mean square deviations (RMSDs) ranged from 0.06 to 0.46°C with an average of 0.2°C deviation, which is less than the acceptance threshold of 0.5°C. Thus, the present validation shows that SCTM predicts core temperatures with acceptable accuracy during intense exercise in warm environments and successfully captures core temperature differences between large and small individuals.NEW & NOTEWORTHY The SCTM has been validated thoroughly for resting humans in warm and cold environments and during water immersion. The present study further demonstrated that SCTM predicts core temperatures with acceptable accuracy during intense exercise up to 1,300 W in temperate and warm environments and captures core temperature differences between large and small individuals. SCTM is potentially useful to develop guidance for safe operation in athletic, military, and occupational settings during exposure to warm or hot environments.


Asunto(s)
Regulación de la Temperatura Corporal , Deportes , Humanos , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Frío , Calor
9.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293225

RESUMEN

Glucocorticoids are steroid hormones well-known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori , the best-known risk factor of gastric cancer. Our results indicate that compared to WT, GRKO macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with Helicobacter revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric anti- Helicobacter immunity.

11.
Oncogenesis ; 13(1): 2, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177125

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is an aggressive pediatric cancer caused by the EWSR1-WT1 fusion oncoprotein. The tumor is refractory to treatment with a 5-year survival rate of only 15-25%, necessitating the development of novel therapeutics, especially those able to target chemoresistant subpopulations. Novel in vitro cancer stem cell-like (CSC-like) culture conditions increase the expression of stemness markers (SOX2, NANOG) and reduce DSRCT cell line susceptibility to chemotherapy while maintaining the ability of DSRCT cells to form xenografts. To gain insights into this chemoresistant model, RNA-seq was performed to elucidate transcriptional alterations between DSRCT cells grown in CSC-like spheres and normal 2-dimensional adherent state. Commonly upregulated and downregulated genes were identified and utilized in pathway analysis revealing upregulation of pathways related to chromatin assembly and disassembly and downregulation of pathways including cell junction assembly and extracellular matrix organization. Alterations in chromatin assembly suggest a role for epigenetics in the DSRCT CSC-like state, which was further investigated with ATAC-seq, identifying over 10,000 differentially accessible peaks, including 4444 sphere accessible peaks and 6,120 adherent accessible peaks. Accessible regions were associated with higher gene expression, including increased accessibility of the CSC marker SOX2 in CSC-like culture conditions. These analyses were further utilized to identify potential CSC therapeutic targets, leading to the identification of B-lymphocyte kinase (BLK) as a CSC-enriched, EWSR1-WT1-regulated, druggable target. BLK inhibition and knockdown reduced CSC-like properties, including abrogation of tumorsphere formation and stemness marker expression. Importantly, BLK knockdown reduced DSRCT CSC-like cell chemoresistance, making its inhibition a promising target for future combination therapy.

12.
Arthritis Rheumatol ; 76(1): 78-91, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37488975

RESUMEN

OBJECTIVE: Interferon (IFN)-1 signatures are a hallmark of patients with systemic sclerosis (SSc). However, its significance in clinical stratification and contribution to deterioration still need to be better understood. METHODS: For hypothesis generation, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsies (four patients with SSc and two controls) using the BD Rhapsody platform. Two publicly available data sets of skin scRNA-seq were used for validation (GSE138669: 12 patients with diffuse cutaneous SSc [dcSSc] and 10 controls; GSE195452: 52 patients with dcSSc and 41 patients with limited cutaneous SSc [lcSSc] and 54 controls). The IFN-1 signature was mapped, functionally investigated in a bleomycin plus IFNα-2 adenovirus-associated virus (AAV)-induced model and verified in an SSc cohort (n = 61). RESULTS: The discovery and validation data sets showed similar findings. Endothelial cells (ECs) had the most prominent IFN-1 signature among dermal nonimmune cells. The EC IFN-1 signature was increased both in patients with SSc versus controls and in patients with dcSSc versus those with lcSSc. Among EC subclusters, the IFN-1 signature was statistically higher in the capillary ECs of patients with dcSSc, which was higher than those in patients with lcSSc, which in turn was higher than those in healthy controls (HCs). Endothelial-to-mesenchymal transition (EndoMT) scores increased in parallel. Deteriorated bleomycin-induced dermal fibrosis, EndoMT, and perivascular fibrosis and caused blood vessel loss with EC apoptosis. Vascular myxovirus resistance (MX) 1, an IFN-1 response protein, was significantly increased both in total SSc versus HC skin and in dcSSc versus lcSSc skin. Baseline vascular MX1 performed similarly to skin score in predicting disease progression over 6 to 34 months in total SSc and was superior in the dcSSc subpopulation. CONCLUSION: The EC IFN-1 signature distinguished SSc skin subtypes and disease progression and may contribute to vasculopathy and fibrosis.


Asunto(s)
Interferón Tipo I , Esclerodermia Sistémica , Enfermedades Vasculares , Humanos , Células Endoteliales/metabolismo , Esclerodermia Sistémica/patología , Fibrosis , Enfermedades Vasculares/patología , Progresión de la Enfermedad , Piel/patología , Bleomicina
13.
BMC Genomics ; 24(1): 588, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794356

RESUMEN

BACKGROUND: The fruits of Gardenia are rich in flavonoids and geniposides, which have various pharmacological effects such as antioxidant, anti-inflammatory and anticancer. In this study, we analyzed the transcriptome and metabolome of gardenia peel and kernel at different growth stages, revealed the regulatory network related to flavonoid synthesis, and identified the key regulatory genes. RESULTS: The results showed that in terms of flavonoid metabolic pathways, gardenia fruits mainly synthesized cinnamic acid through the phenylpropanoid pathway, and then synthesized flavonoids through the action of catalytic enzymes such as 4-coumaroyl-CoA ligase, chalcone synthase, chalcone isomerase and flavanol synthase, respectively. In addition, we found that the metabolomics data showed a certain spatial and temporal pattern in the expression of genes related to the flavonoid metabolism pathway and the relative content of metabolites, which was related to the development and ripening process of the fruit. CONCLUSIONS: In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.


Asunto(s)
Gardenia , Iridoides , Gardenia/genética , Frutas/genética , Flavonoides , Multiómica
14.
BMC Oral Health ; 23(1): 723, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803323

RESUMEN

BACKGROUND: Although obstructive sleep apnea (OSA) and periodontitis are associated, whether this association is causative is uncertain. METHODS: We conducted a bidirectional Mendelian randomization (MR) analysis using data from publically accessible genome-wide association studies. The single-nucleotide polymorphisms (SNPs) for OSA were derived from 16,761 cases and 201,194 controls. The pooled data of periodontitis association involved up to 17,353 individuals. Disease-associated single-nucleotide polymorphisms were selected as an instrumental variable at the genome-wide significance level (p < 5.0 × 10- 6). Subsequently, the causal effects were estimated using three different methods: inverse variance weighting (IVW), MR-Egger, and weighted median. Then, these causal estimates were expressed as dominance ratios [odds ratio (OR)]. RESULTS: The MR analysis revealed that genetically determined OSA promotes the development of periodontitis [ IVW OR = 1.117, 95% confidence interval (CI) = 1.001-1.246, p = 0.048). Furthermore, no causal effect of genetically predicted periodontitis on OSA was noted in the reverse MR analysis (IVW OR = 1, 95% CI: 0.95-1.06, p = 0.87). The trend in results from the MR-Egger regression and weighted median (WM) was consistent with that in results from the IVW method. The robustness of the results was confirmed by the sensitivity analysis. CONCLUSIONS: In summary, the results of our MR investigation suggest an association between OSA and periodontitis, proposing that early screening and treatment of OSA is beneficial for the prevention and prognosis of periodontitis.


Asunto(s)
Periodontitis , Apnea Obstructiva del Sueño , Humanos , Estudio de Asociación del Genoma Completo , Oportunidad Relativa , Periodontitis/genética , Polimorfismo de Nucleótido Simple/genética , Apnea Obstructiva del Sueño/genética , Análisis de la Aleatorización Mendeliana
15.
bioRxiv ; 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37873304

RESUMEN

The foundation of spermatogenesis and lifelong fertility is provided by spermatogonial stem cells (SSCs). SSCs divide asymmetrically to either replenish their numbers (self-renewal) or produce undifferentiated progenitors that proliferate before committing to differentiation. However, regulatory mechanisms governing SSC maintenance are poorly understood. Here, we show that the CCR4-NOT mRNA deadenylase complex subunit CNOT3 plays a critical role in maintaining spermatogonial populations in mice. Cnot3 is highly expressed in undifferentiated spermatogonia, and its deletion in spermatogonia resulted in germ cell loss and infertility. Single cell analyses revealed that Cnot3 deletion led to the de-repression of transcripts encoding factors involved in spermatogonial differentiation, including those in the glutathione redox pathway that are critical for SSC maintenance. Together, our study reveals that CNOT3 - likely via the CCR4-NOT complex - actively degrades transcripts encoding differentiation factors to sustain the spermatogonial pool and ensure the progression of spermatogenesis, highlighting the importance of CCR4-NOT-mediated post-transcriptional gene regulation during male germ cell development.

16.
Comput Biol Med ; 167: 107575, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865983

RESUMEN

This study validates the Six Cylinder Thermoregulatory Model (SCTM) during prolonged warm water immersion, which underpins the Probability of Survival Decision Aid (PSDA) currently in use by the United States Coast Guard (USCG). PSDA predicts survival time for hypothermia and dehydration. USCG has been using PSDA for search and rescue operation since 2010. In 2019, USCG organized a workshop to review PSDA performance and concluded that PSDA is an essential tool for operation, although it occasionally overestimates survival times in warm waters above 16 °C. Forty-six human subjects were immersed from the neck down in 18, 22, and 26 °C water for 45 min up to 10 h. Rectal temperature (Tcore), 10-site mean skin temperature (Tsk), and water loss were measured. At the end of immersion, Tcore ranged from 35.2 to 38.0 °C, and Tsk ranged from 19.7 to 27.4 °C. The SCTM-predicted Tcore, Tsk and water loss were compared to the measured values. Root mean squared deviation (RMSD) was used to test for acceptable predictions. Tcore RMSDs were 0.2, 0.14, and 0.3 °C in 18, 22, and 26 °C water respectively. Tsk RMSDs were 1.44, 0.76, and 1.1 °C in 18, 22, and 26 °C water respectively. SCTM underpredicted water loss by 84%. Overall, SCTM predicted Tcore and Tsk with acceptable accuracy in 18 and 22 °C water for up to 10 h, but overpredicted in 26 °C water. Future studies and algorithm development are required to improve water loss prediction as well as Tcore and Tsk prediction in 26 °C water.


Asunto(s)
Inmersión , Agua , Humanos , Ejercicio Físico , Regulación de la Temperatura Corporal , Temperatura Cutánea , Temperatura Corporal , Frío
17.
iScience ; 26(9): 107616, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37694147

RESUMEN

WNK1 is an important regulator in many physiological functions, yet its role in male reproduction is unexplored. In the male germline, WNK1 is upregulated in preleptotene spermatocytes indicating possible function(s) in spermatogenic meiosis. Indeed, deletion of Wnk1 in mid-pachytene spermatocytes using the Wnt7a-Cre mouse led to male sterility which resembled non-obstructive azoospermia in humans, where germ cells failed to complete spermatogenesis and produced no sperm. Mechanistically, we found elevated MTOR expression and signaling in the Wnk1-depleted spermatocytes. As MTOR is a central mediator of translation, we speculated that translation may be accelerated in these spermatocytes. Supporting this, we found the acrosome protein, ACRBP to be prematurely expressed in the spermatocytes with Wnk1 deletion. Our study uncovered an MTOR-regulating factor in the male germline with potential implications in translation, and future studies will aim to understand how WNK1 regulates MTOR activity and impact translation on a broader spectrum.

18.
Nat Metab ; 5(9): 1526-1543, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537369

RESUMEN

Restriction of methionine (MR), a sulfur-containing essential amino acid, has been reported to repress cancer growth and improve therapeutic responses in several preclinical settings. However, how MR impacts cancer progression in the context of the intact immune system is unknown. Here we report that while inhibiting cancer growth in immunocompromised mice, MR reduces T cell abundance, exacerbates tumour growth and impairs tumour response to immunotherapy in immunocompetent male and female mice. Mechanistically, MR reduces microbial production of hydrogen sulfide, which is critical for immune cell survival/activation. Dietary supplementation of a hydrogen sulfide donor or a precursor, or methionine, stimulates antitumour immunity and suppresses tumour progression. Our findings reveal an unexpected negative interaction between MR, sulfur deficiency and antitumour immunity and further uncover a vital role of gut microbiota in mediating this interaction. Our study suggests that any possible anticancer benefits of MR require careful consideration of both the microbiota and the immune system.


Asunto(s)
Microbioma Gastrointestinal , Sulfuro de Hidrógeno , Neoplasias , Masculino , Ratones , Femenino , Animales , Metionina/metabolismo , Sulfuro de Hidrógeno/metabolismo , Racemetionina , Azufre
19.
Arthritis Res Ther ; 25(1): 151, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596660

RESUMEN

BACKGROUND: The early growth response 1 (EGR1) is a central transcription factor involved in systemic sclerosis (SSc) pathogenesis. Iguratimod is a synthesized anti-rheumatic disease-modifying drug, which shows drastic inhibition to EGR1 expression in B cells. This study is aiming to investigate the anti-fibrotic effect of iguratimod in SSc. METHODS: EGR1 was detected by immunofluorescence staining real-time PCR or western blot. Iguratimod was applied in EGR1 overexpressed or knockdown human dermal fibroblast, bleomycin pre-treated mice, tight skin 1 mice, and SSc skin xenografts. RNA sequencing was performed in cultured fibroblast and xenografts to identify the iguratimod regulated genes. RESULTS: EGR1 overexpressed predominantly in non-immune cells of SSc patients. Iguratimod reduced EGR1 expression in fibroblasts and neutralized changes of EGR1 response genes regulated by TGFß. The extracellular matrix (ECM) production and activation of fibroblasts were attenuated by iguratimod while EGR1 overexpression reversed this effect of iguratimod. Iguratimod ameliorated the skin fibrosis induced by bleomycin and hypodermal fibrosis in TSK-1 mice. Decreasing in the collagen content as well as the density of EGR1 or TGFß positive fibroblasts of skin xenografts from naïve SSc patients was observed after local treatment of iguratimod. CONCLUSION: Targeting EGR1 expression is a probable underlying mechanism for the anti-fibrotic effect of iguratimod.


Asunto(s)
Antirreumáticos , Proteína 1 de la Respuesta de Crecimiento Precoz , Esclerodermia Sistémica , Animales , Humanos , Ratones , Bleomicina/toxicidad , Cromonas , Fibrosis , Esclerodermia Sistémica/tratamiento farmacológico , Proteína 1 de la Respuesta de Crecimiento Precoz/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/genética
20.
Front Endocrinol (Lausanne) ; 14: 1190890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324270

RESUMEN

Background: The proximal region of the mouse epididymis plays a pivotal role in sperm transport, sperm maturation, and male fertility. Several studies have focused on segment-dependent gene expression of the mouse epididymis through high-throughput sequencing without the precision of the microdissection. Methods and results: Herein, we isolated the initial segment (IS) and proximal caput (P-caput) by physical microdissection using an Lcn9-cre; Rosa26tdTomato mouse model. We defined the transcriptome changes of caput epididymis by RNA sequencing (RNA-seq), which identified 1,961 genes that were abundantly expressed in the IS and 1,739 genes that were prominently expressed in the P-caput. In addition, we found that many differentially expressed genes (DEGs) were predominantly or uniquely expressed in the epididymis and region-specific genes were highly associated with transport, secretion, sperm motility, fertilization, and male fertility. Conclusion: Thus, this study provides an RNA-seq resource to identify region-specific genes in the caput epididymis. The epididymal-selective/specific genes are potential targets for male contraception and may provide new insights into understanding segment-specific epididymal microenvironment-mediated sperm transport, maturation, and male fertility.


Asunto(s)
Epidídimo , Semen , Ratones , Animales , Masculino , Epidídimo/metabolismo , Motilidad Espermática , Perfilación de la Expresión Génica , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA