Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 46(4): 319-332, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632094

RESUMEN

Granulopoiesis is a highly ordered and precisely regulated process in which hematopoietic-related transcription factors play crucial roles. These transcription factors form complex regulatory networks through interactions with their co-factors or with each other, and anomalies in these networks can lead to the onset of leukemia. While the structures and functions of dozens of transcription factors involved in this process have been extensively studied, research on the regulatory relationships between these factors remains relatively limited. PU.1 and cMYB participate in multiple stages of neutrophil development, and their abnormalities are often associated with hematologic disorders. However, the regulatory relationship between these factors in vivo and their mode of interaction remain unclear. In this study, zebrafish models with cMyb overexpression (cmybhyper) and Pu.1 deficiency (pu.1G242D/G242D) were utilized to systematically investigate the interaction between Pu.1 and cMyb during granulopoiesis through whole-mount in situ hybridization, qRT-PCR, fluorescence reporting systems, and rescue experiments. The results showed a significant increase in cmyb expression in neutrophils of the pu.1G242D/G242D mutant, while there was no apparent change in pu.1 expression in cmybhyper. Further experiments involving injection of morpholino (MO) to decrease cmyb expression in pu.1G242D/G242D mutants, followed by SB and BrdU staining to assess neutrophil quantity and proliferation, revealed that reducing cmyb expression could rescue the abnormal proliferation phenotype of neutrophils in the pu.1G242D/G242D mutant. These findings suggest that Pu.1 negatively regulates the expression of cMyb during neutrophil development. Finally, through the construction of multi-site mutation plasmids and a fluorescent reporter system, confirmed that Pu.1 directly binds to the +72 bp site in the cmyb promoter, exerting negative regulation on its expression. In conclusion, this study delineates that Pu.1 participates in neutrophil development by regulating cmyb expression. This provides new insights into the regulatory relationship between these two factors and their roles in diseases.


Asunto(s)
Neutrófilos , Proteínas Proto-Oncogénicas c-myb , Transactivadores , Pez Cebra , Animales , Hematopoyesis , Neutrófilos/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
2.
Leukemia ; 35(8): 2299-2310, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33483612

RESUMEN

ASXL1 is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies, ASXL1 mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that asxl1-induced neutrophilic dysplasia was associated with reduced expression of bmi1a, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by asxl1 mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.


Asunto(s)
Embrión no Mamífero/patología , Leucemia Mieloide Aguda/patología , Leucemia Mielomonocítica Crónica/patología , Mutación , Neutrófilos/patología , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular , Embrión no Mamífero/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Neutrófilos/metabolismo , Fenotipo , Proteínas Represoras/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Haematologica ; 105(3): 674-686, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31289206

RESUMEN

Chronic myeloid leukemia (CML) is induced by the BCR/ABL1 oncogene, which encodes a protein tyrosine kinase. We examined the effect of direct overexpression of the human p210 BCR/ABL1 oncoprotein in zebrafish. Humanized p210 BCR/ABL1 protein was detectable in Tg(hsp70: p210BCR/ABL1 ) transgenic zebrafish embryos and adult kidney marrow. Transgenic zebrafish developed CML, which could be induced via cells transplanted into recipients. The expression of human BCR/ABL1 promoted myeloid lineages in Tg(hsp70:p210BCR/ABL1) transgenic embryos. A total of 77 of 101 (76.24%) Tg(hsp70:p210BCR/ABL1) adult transgenic zebrafish (age 6 months-1 year) developed CML. CML in zebrafish showed a triphasic phenotype, similar to that in humans, involving a chronic phase predominantly characterized by neutrophils in various degrees of maturation, an accelerated phase with an increase in blasts and immature myeloid elements, and a blast phase with >90% blasts in both the peripheral blood and kidney marrow. Tyrosine kinase inhibitors, as the standard drug treatment for human CML, effectively reduced the expanded myeloid population in Tg(hsp70:p210BCR/ABL1) transgenic embryos. Moreover, we screened a library of 171 compounds and identified ten new drugs against BCR/ABL1 kinase-dependent or -independent pathways that could also reduce lcp1+ myeloid cell numbers in Tg(hsp70:p210BCR/ABL1) transgenic embryos. In summary, we generated the first humanized zebrafish CML model that recapitulates many characteristics of human CML. This novel in vivo model will help to elucidate the mechanisms of CML disease progression and allow high-throughput drug screening of possible treatments for this disease.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Adulto , Animales Modificados Genéticamente , Crisis Blástica , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Células Mieloides , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA