Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169748

RESUMEN

A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120769, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942415

RESUMEN

Forming a stable complex is a prerequisite for intramolecular charge transfer (ICT) probe to recognize proteins. Herein, a human serum albumin (HSA) structure-based fluorescent probe DNPM was fabricated successfully with fully considering its binding to the primary sites in HSA. Molecular simulation was used to assist the probe design. Two ICT ligands DNPM and MPM were initially designed. Both DNPM and MPM had favorable HSA binding abilities, but only DNPM had a satisfactory HSA sensitivity. Electromagnetic coupling played a key role in DNPM fluorescence enhancement. Due to the electromagnetic environment difference in protein structure, DNPM only exhibited strong sensitivity to serum albumins. DNPM could bind to Sudlow site I and site II in HSA but could not be displaced from its binding sites by common site specific drugs (e.g. phenylbutazone and ibuprofen). Besides, DNPM exhibited great potential for illumining serum albumin in living cells. The results provided a beneficial approach for designing and synthesizing high sensitive and selective fluorescent probes for proteins.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Humana , Humanos , Unión Proteica , Albúmina Sérica/metabolismo , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA