Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Br J Pharmacol ; 180(10): 1339-1361, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36521846

RESUMEN

BACKGROUND AND PURPOSE: Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism. EXPERIMENTAL APPROACH: Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients. KEY RESULTS: Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS: NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Prurito/tratamiento farmacológico , Piel/patología , Inflamación/patología , Células Receptoras Sensoriales
2.
Mol Med ; 22: 800-808, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27878211

RESUMEN

Glucagon-like peptide 1 (GLP-1) can promote islet ß-cell replication and function, and mesenchymal stem cells (MSCs) can inhibit T cell autoimmunity. This study aimed at testing the dynamic distribution of infused human MSCs and therapeutic effect of combined MSCs and Liraglutide, a long-acting GLP-1 analogue, on preserving ß-cell function in severe non-obese diabetic (NOD) mice. We found that infused MSCs accumulated in the pancreas at 4 weeks post infusion, which was not affected by Liraglutide treatment. Liraglutide significantly enhanced the function of MSCs to preserve islet ß-cells by reducing glucose level at 30 minutes post glucose challenge and increasing the contents and secretion of insulin by islet ß-cells in severe diabetic NOD mice. Infusion with MSCs significantly reduced insulitis scores, but increased the frequency of splenic Tregs, accompanied by reducing the levels of plasma IFN-γ and TNF-α and elevating the levels of plasma IL-10 and transforming growth factor-ß1 (TGF-ß1) in NOD mice. Although Liraglutide mitigated MSC-mediated changes in the frequency of Tregs and the levels of plasma IL-10, Liraglutide significantly increased the levels of plasma TGF-ß1 in severe diabetic NOD mice. Therefore, our findings suggest that Liraglutide may enhance the therapeutic efficacy of MSCs in treatment of severe type 1 diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA