Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 34(6): 1031-1042, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21388419

RESUMEN

Cellular total RNA level is usually stable, although it may increase gradually during growth or seed germination, or decrease gradually under environmental stresses. However, we found that plant cell RNA could be doubled within 48 h in response to herbicide-induced Mg-protoporphyrin and heme accumulation or a high level of sugar treatment. This rapid RNA multiplication is important for effective cellular resistance to oxidative stress, such as high-light and herbicide co-stress conditions, where the plastid-signalling defective mutant gun1 shows an apparent phenotype (more severe photobleaching). Hexokinase is required for sugar-induced RNA multiplication. While both sugar and Mg-protoporphyrin IX require plastid protein GUN1 and a nuclear transcription factor ABI4, haem appears to function through an independent pathway to control RNA multiplication. The transcription co-factor CAAT binding protein mediates the rapid RNA multiplication in plant cells in all the cases.


Asunto(s)
Carbohidratos/farmacología , Hemo/farmacología , Herbicidas/farmacología , Luz , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Protoporfirinas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Modelos Biológicos , Mutación/genética , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Plastidios/efectos de la radiación , Piridazinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN de Planta/biosíntesis , ARN Ribosómico/biosíntesis , ARN de Transferencia/biosíntesis , Plantones/efectos de los fármacos , Plantones/genética , Plantones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Tiempo
2.
Planta ; 234(1): 171-81, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21394469

RESUMEN

Salicylic acid (SA) is required for plant systemic acquired resistance (SAR) to viruses. However, SA-deficient plants adapt to RNA virus infections better, which show a lighter symptom and have less reactive oxygen species (ROS) accumulation. The virus replication levels are higher in the SA-deficient plants during the first 10 days, but lower than the wild-type seedlings after 20 dpi. The higher level of glutathione and ascorbic acid (AsA) in SA-deficient plants may contribute to their alleviated symptoms. Solo virus-control method for mortal viruses results in necrosis and chlorosis, no matter what level of virus RNAs would accumulate. Contrastingly, early and high-dose AsA treatment alleviates the symptom, and eventually inhibits virus replication after 20 days. ROS eliminators could not imitate the effect of AsA, and could neither alleviate symptom nor inhibit virus replication. It suggests that both symptom alleviation and virus replication control should be considered for plant virus cures.


Asunto(s)
Arabidopsis/virología , Ácido Ascórbico/farmacología , Glutatión/farmacología , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Virus ARN/fisiología , Ácido Salicílico/metabolismo , Inmunidad Innata , Enfermedades de las Plantas/terapia , Replicación Viral/efectos de los fármacos
3.
Planta ; 233(2): 299-308, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21046144

RESUMEN

Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.


Asunto(s)
Arabidopsis/virología , Ciclopentanos/farmacología , Oxilipinas/farmacología , Enfermedades de las Plantas/virología , Virus de Plantas/efectos de los fármacos , Ácido Salicílico/farmacología , Solanaceae/virología , Antivirales/administración & dosificación , Antivirales/farmacología , Ciclopentanos/administración & dosificación , Oxilipinas/administración & dosificación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/virología , Ácido Salicílico/administración & dosificación , Replicación Viral/efectos de los fármacos
4.
J Integr Plant Biol ; 52(9): 809-16, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20738725

RESUMEN

Ligustrum vicaryi L. is a hybrid of Ligustrum ovalifolium Hassk. var. aureo-marginatum and Ligustrum vulgale L., and displays a chlorophyll-less phenotype. Therefore it is widely used as a horticultural shrub because of its golden-color leaves. Its putative mechanism, light responses, chlorophyll synthesis and plastid development were studied. L. vicaryi has a higher level of 5-aminolevulinic acid (ALA), but lower levels of chlorophylls compared with L. quihoui. The yellowish phenotype of L. vicaryi upper leaves could be attributed to their hampered conversion from chlorophyllide into chlorophyll a. Despite the enhanced ALA level and the decreased thylakoid stacking in plastids, L. vicaryi golden leaves contain normal levels of Lhcb transcripts and photosystem apoproteins. Furthermore, reactive oxygen species (ROS) accumulation is almost the same in L. vicaryi and L. quihoui. The golden leaves often turn green and the contents of chlorophylls increase with decreasing light intensity. Dynamic changes of chlorophyll-synthesis-system under the light transition were also analyzed.


Asunto(s)
Clorofila/biosíntesis , Luz , Ligustrum/crecimiento & desarrollo , Plastidios , Carotenoides/metabolismo , Clorofila/metabolismo , Ligustrum/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Z Naturforsch C J Biosci ; 65(1-2): 73-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20355325

RESUMEN

Dark green islands (DGIs) are a common symptom of plants systemically infected with the mosaic virus. DGIs are clusters of green leaf cells that are free of virus but surrounded by yellow leaf tissue that is full of virus particles. In Cucumber mosaic virus (CMV)-infected Nicotiana tabacum leaves, the respiration and photosynthesis capabilities of DGIs and yellow leaf tissues were measured. The results showed that the cyanide-resistant respiration was enhanced in yellow leaf tissue and the photosynthesis was declined, while in DGIs they were less affected. The activities of the oxygen-scavenging enzymes catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in infected leaves were significantly higher than those in the healthy leaves, and the enzyme activities in DGIs were always lower than in the yellow leaf tissues. Reactive oxygen species (ROS) staining showed that the hydrogen peroxide content in yellow leaf tissues was apparently higher than that in DGIs, while the superoxide content was on the contrary. Formation of DGIs may be a strategy of the host plants resistance to the CMV infection.


Asunto(s)
Cucumovirus/patogenicidad , Nicotiana/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Clorofila/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismo , Respiración , Nicotiana/metabolismo
6.
Biochemistry ; 48(41): 9757-63, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19764773

RESUMEN

Kinetic studies of protein dephosphorylation in thylakoid membranes showed that the minor light-harvesting antenna protein CP29 could be phosphorylated in barley (C3) and maize (C4) seedlings, but not in spinach under water [Liu, W. J., et al. (2009) Biochim. Biophys. Acta 1787, 1238-1245], salt, or cold stress [Pursiheimo, S., et al. (2003) Plant Cell Environ. 26, 1995-2003], suggesting that phosphorylation of CP29 is a general phenomenon in monocots, but not in dicots under environmental stresses. Abscisic acid (ABA), reactive oxygen species (ROS), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), NO, and the scavenger of H(2)O(2) had weak effects on CP29 phosphorylation. However, three protein kinase inhibitors, U0126, W7, and K252a (for mitogen-activated protein kinase, Ca(2+)-dependent protein kinase, and Ser/Thr protein kinases, respectively), decrease the level of CP29 phosphorylation in barley apparently under environmental stresses. Therefore, these three protein kinases are involved in CP29 phosphorylation. We also found that most CP29 phosphorylation was accompanied by its lateral migration from granum membranes to stroma-exposed thylakoid regions, and the instability of PSII supercomplexes and LHCII trimers under environmental stresses.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cotiledón/metabolismo , Ambiente , Hordeum/metabolismo , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Fosforilación , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Agua , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA