Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 462: 140987, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217748

RESUMEN

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Asunto(s)
Culinaria , Congelación , Germinación , Campos Magnéticos , Oryza , Oryza/química , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Harina/análisis , Almidón/química , Almidón/metabolismo , Agua/química , Dureza , Manipulación de Alimentos , Semillas/química , Semillas/crecimiento & desarrollo
2.
Carbohydr Polym ; 346: 122594, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245486

RESUMEN

Porous starch (PS) was widely prepared for its large effective surface area, pore volume, and superior hydrophilic property, but its application is limited by enzyme and chemical use. In this study, a novel method to prepare PS with controllable hierarchical pores through ultrasound-ethanol precipitation and different amylose-amylopectin ratios is proposed. As shown in porous morphology and parameters, there were macropores, mesopores and micropores in the formed PS. Moreover, we found that the content of amylose (AM) was negatively related with the total pore volume and pore diameter in PS. The different surface tensions created through ethanol evaporation and water migration during oven drying are the main mechanisms of forming pores with controllable sizes. Based on the molecular information and the long-/short-range orders reflected by crystalline pattern, lamellas, and single-/double-helices, we conclude that AM is easier to form V-type inclusion complexes with ethanol. More single helix of V-amylose was transformed from B-type polymorph after ethanol exchange, which had significantly broadened dLozentz in PS. The TG spectra proved that the novel PS has the stable thermodynamic property. Overall, the finding of an objective regular between AM and pore sizes of PS in this study may support the other work related to PS.

3.
Biomaterials ; 314: 122819, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270624

RESUMEN

Upon the pressure of conventional land agriculture and marine environment facing the future of human beings, the emerging of alternative proteins represented by cultured meat is expected with a breakthrough of efficient, safe and sustainable production. However, the cell proliferation efficiency and final myofiber density in current animal-derived scaffolds are still limited. Here, we incorporated five plant-derived edible polymeric glucosyl nanoparticles (GNPs) into gelatin/alginate hydrogels to spontaneously form nanoaggregates where nanotopographies were observed inside. The nanoscale topological morphology significantly enhances the adhesion and proliferation efficiencies of piscine satellite cells (PSCs) in the tailored extracellular matrix of as-prepared scaffold. Physically, the presence of GNP-induced nanoaggregate increases the interaction between ITG-A1 (membrane protein of PSCs) and hydrogel microenvironment, which activates the focal adhesion-integrin-cytoskeleton mechanotransduction signaling to promote cell proliferation. With a controlled diameter of hydrogel filament, these inner topological GNP nanoaggregates can also improve the density, alignment and differentiation efficiency of PSCs. When cultured in vitro for 15 days, the cell density, size and orientation of muscle fibers in the GNP-stimulated cultured fish fillet are very similar to the total cell mass in native fish muscle tissue.

4.
Foods ; 13(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39200459

RESUMEN

Resistant starch (RS) has the advantage of reshaping gut microbiota for human metabolism and health, like glycemic control, weight loss, etc. Among them, RS3 prepared from pure starch is green and safe, but it is hard to achieve structural control. Here, we regulate the crystal structure of starch with different chain-length distributions (CLDs) via extrusion at low/high shearing levels. The change in CLDs in extruded starch was obtained, and their effects on the fine structure (Dm, dBragg, dLorentz, degree of order and double helix, degree of crystal) of RS and its physicochemical properties were investigated by SAXS, FTIR, XRD and 13C NMR analyses. The results showed that the RS content under a 250 r/min extrusion condition was the highest at 61.52%. Furthermore, the crystalline system induced by high amylopectin (amylose ≤ 4.78%) and a small amount of amylose (amylose ≥ 27.97%) was favorable for obtaining a high content of RS3-modified products under the extruding environment. The control of the moderate proportion of the A chains (DP 6-12) in the starch matrix was beneficial to the formation of RS.

5.
Carbohydr Polym ; 343: 122499, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174108

RESUMEN

3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.


Asunto(s)
Curcumina , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas , Polisacáridos Bacterianos , Impresión Tridimensional , Proteínas de Soja , Almidón , Emulsiones/química , Proteínas de Soja/química , Almidón/química , Curcumina/química , Nanopartículas/química , Polisacáridos Bacterianos/química , Geles/química , Reología
6.
J Food Sci ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086043

RESUMEN

In this study, starch-based nanofiber mats were successfully prepared from aqueous solution by electrospinning and used for probiotic encapsulation for the first time. The physicochemical properties of the octenylsuccinated (OS) starch/poly(vinyl alcohol) (PVA) blend solutions were systematically investigated. Through Fourier transform infrared spectroscopy and X-ray diffraction spectra analysis, it was found that miscibility and hydrogen bonding interactions exist between OS starch and PVA molecules. Thermogravimetric analysis and derivative thermogravimetric analysis revealed that the produced nanofibers possess satisfactory thermal stability. Scanning electron microscopy images and diameter distribution histograms showed that continuous and defect-free nanofibers were obtained and along with the increase in the weight ratio of OS starch, the average diameter gradually decreased. In addition, it was confirmed that the probiotics were successfully encapsulated in nanofiber mats. The survival rates of Lactobacillus plantarum AB-1 and Lactobacillus rhamnosus GG encapsulated in nanofibers were as high as 94.63% and 92.42%, respectively, significantly higher than those of traditional freeze-drying. Moreover, compared to free cells, probiotics encapsulated in nanofiber mats retained better viability after 21 days of storage at 4 and 25°C, and showed remarkably higher survival rates after exposure to simulated gastric and intestinal fluid. This study showed that the developed nanofibers can be a promising encapsulation system for the protection of probiotics.

7.
Int J Biol Macromol ; 277(Pt 3): 134242, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084438

RESUMEN

In order to achieve high cell adhesion and growth efficiency on scaffolds for cultured meat, animal materials, especially gelatin, are necessary though the disadvantages of weak mechanical properties and poor stability of their hydrogel scaffolds are present during cell cultivation. Here, we use rice bran as a kind of filling and supporting materials to develop a composite scaffold with gelatin for fish cell cultivation, where rice bran is also inexpensive from high yield fibrous agricultural by-product. The rice bran (with a proportion of 1, 3, 5, 7, 10 to 3 of gelatin) could evenly distributed in the three-dimensional network composed of gelatin hydrogel. It contributed to delaying swelling and degradation rates, fixing water and improving elastic modulus. It is important that rice bran-gelatin hydrogel scaffolds (especially the hydrogel with 70 % rice bran, db) promoted piscine satellite cells (PSCs) proliferation effectively compared to the pure gelatin hydrogel, and the former could also support the differentiation of PSCs. Overall, this work showed a positive promotion to explore new source of scaffold materials like agricultural by-product for reducing the cost of cell cultured meat production.


Asunto(s)
Proliferación Celular , Gelatina , Hidrogeles , Carne , Oryza , Células Satélite del Músculo Esquelético , Andamios del Tejido , Gelatina/química , Oryza/química , Animales , Andamios del Tejido/química , Hidrogeles/química , Hidrogeles/farmacología , Proliferación Celular/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Peces , Ingeniería de Tejidos/métodos , Diferenciación Celular/efectos de los fármacos , Carne in Vitro
8.
Artículo en Inglés | MEDLINE | ID: mdl-38680043

RESUMEN

Three-dimensional (3D) bioprinting has great potential in the applications of tissue engineering, including cell culturing meat, because of its versatility and bioimitability. However, existing bio-inks used as edible scaffold materials lack high biocompatibility and mechanical strength to enable cell growth inside. Here, we added starch nanoparticles (SNPs) in a gelatin/sodium alginate (Gel/SA) hydrogel to enhance printing and supporting properties and created a microenvironment for adherent proliferation of piscine satellite cells (PSCs). We demonstrated the biocompatibility of SNPs for cells, with increasing 20.8% cell viability and 36.1% adhesion rate after 5 days of incubation. Transcriptomics analysis showed the mechanisms underlying the effects of SNPs on the adherent behavior of myoblasts. The 1% SNP group had a low gel point and viscosity for shaping with PSCs infusion and had a high cell number and myotube fusion index after cultivation. Furthermore, the formation of 3D muscle tissue with thicker myofibers was shown in the SNP-Gel/SA hydrogel by immunological staining.

9.
Int J Biol Macromol ; 267(Pt 2): 131460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608991

RESUMEN

The hydrophilic and low mechanical properties limited the application of starch-based films. In this work, a hydrophobic starch-based nanofiber mat was first successfully prepared from aqueous solution at room temperature by using electrospinning and glutaraldehyde (GTA) vapor phase crosslinking techniques for active packaging applications. Catechin (CAT) was immobilized in the nanofibers by electrospinning, resulting in higher thermal stability (Tdmax = 315.23 °C), antioxidant (DPPH scavenging activity = 94.31 ± 2.70 %) and antimicrobial (inhibition zone diameter = 15.6 ± 0.3 mm) of the fibers, which further demonstrated hydrogen bonding and electrostatic interaction between CAT and fibers. Nanofibers after GTA vapor phase crosslinking exhibited enhanced hydrophobicity (water contact angle: 15.6 ± 1.5° â†’ 93.5 ± 2.3°) and mechanical properties (tensile strength: 1.82 ± 0.06 MPa â†’ 7.64 ± 0.24 MPa, elastic modulus: 19.35 ± 0.63 MPa â†’ 45.34 ± 0.51 MPa). The results demonstrated that preparation of starch-based electrospun nanofiber mats in aqueous system at room temperature overcame the challenges of organic solvent pollution and thermosensitive material encapsulation, while GTA vapor phase crosslinking technique improved the hydrophobicity and mechanical properties of nanofiber mats, which facilitated the application of starch-based materials in the field of packaging.


Asunto(s)
Catequina , Embalaje de Alimentos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Almidón , Almidón/química , Nanofibras/química , Embalaje de Alimentos/métodos , Catequina/química , Antioxidantes/química , Antioxidantes/farmacología , Reactivos de Enlaces Cruzados/química , Tecnología Química Verde , Resistencia a la Tracción
10.
Int J Biol Macromol ; 256(Pt 1): 128384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029905

RESUMEN

A starch-based nanofiber mat was prepared for real-time monitoring of food freshness for the first time. UV-vis results showed that roselle anthocyanins (RS) conferred a wide pH sensing range on the nanofiber mat. The prepared nanofiber mats demonstrated good color visibility (total color difference value (ΔE) increased to 56.4 ± 0.7) and a reversible response (within 120 s). Scanning electron microscopy and Fourier transform infrared spectroscopy results suggested that the nanofibers had smooth surfaces without beaded fibers and that RS was well embedded into the nanofibers. The introduction of RS improved the thermal stability of the nanofibers. Color stability tests revealed that the nanofibers exhibited excellent color stability (maximum change ΔE = 1.57 ± 0.03) after 14 days of storage. Pork and shrimp freshness tests verified that the nanofibers could effectively reflect the dynamic freshness of pork and shrimp. Nontoxic, degradable and responsive characteristics make the pH-sensitive nanofiber mat a smart food label with great application potential.


Asunto(s)
Antocianinas , Nanofibras , Antocianinas/química , Nanofibras/química , Almidón/química , Alimentos Marinos , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos
11.
Food Res Int ; 174(Pt 2): 113663, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981365

RESUMEN

This study aimed to investigate the effect of static magnetic field (SMF, 0-10 mT) on the quality of rice dumplings subjected to 7, 14, 21, and 28 freeze-thaw cycles. The underlying mechanism was explored by monitoring changes in water phase transition, water distribution, and structural and physicochemical properties of rice flour. Results suggested that SMF enables the formation of small ice crystals by accelerating freezing rate, shortening phase transition time, and increasing bound water content, which attributes to reducing the mechanical damage on starch granules and thus improves the quality of frozen rice dumpling. After 7-28 freeze-thaw cycles, SMF treatment increased the whiteness by 0.08-1.58, reduced the cracking ratio by 1.67 %-8.34 %, decreased the water loss ratio by 0-0.75 %, and significantly improved the texture of cooked rice dumplings. This study confirmed the feasibility of SMF in improving the quality of rice dumpling, which contributes to expanding the applications of magnetic freezer in the preservation of starch-based foods.


Asunto(s)
Oryza , Congelación , Oryza/química , Harina , Agua/química , Almidón/química
12.
Int J Biol Macromol ; 252: 126543, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634781

RESUMEN

To solve undiscernible freshness changes of printed functional surimi while maintaining printed shape, 4D printable color-changing material were prepared. Firstly, based on results of printing properties and fresh-keeping of Ca2+-NS-L-surimi, it showed better printing effects (enhanced mechanical strength) and good preservation (inhibition of amino acids decomposition, bacterial growth). However, freshness changes of printed Ca2+-NS-L-surimi were not distinguished directly. To avoid that, 4D printable color-changing material-anthocyanin-hydroxypropyl methyl cellulose-xanthan gum-carrageenan (AHXK) was prepared for indicating freshness through discoloration. Printing results showed AHX with 5 % K had the most suitable mechanical strength (appropriate gel strength, texture, rheology) for printing. Based on that, AHXK had stable color (ΔE fluctuation <5) and was sensitive to pH and ammonia (obvious discoloration; ΔE > 10). Actual freshness monitoring results (co-printing of AHXK-surimi) exhibited significant discolorations, especially for HXK with 0.75 % A. It became green during refrigeration of 3-5 d (keeping fresh, ΔE < 4), brighter green at 7 d (decreased freshness, ΔE > 6), turned yellow at 9 d (spoilage, ΔE > 16), which were distinguished significantly with naked eyes rather than traditional freshness determining. In conclusion, printed AHXK-functional surimi exhibited good printing, preservation and nondestructive freshness monitoring, facilitating application of 3D printed functional surimi.


Asunto(s)
Antocianinas , Almidón , Almidón/química , Antocianinas/química , Luteína , Carragenina , Geles/química
13.
Food Chem ; 427: 136644, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390737

RESUMEN

Bayberry juice is favored for its unique taste and flavor, while heat sterilization tends to reduce the aroma quality during processing, which limits its acceptability to consumers. To address this issue, we use exogenous polyphenols to regulate flavor compounds to improve the product quality. Total 13 differential key aroma-active compounds were identified between fresh bayberry juice (FBJ) and heat-sterilized bayberry juice (HBJ) using aroma extract dilution analysis (AEDA), orthogonal partial least squares-discriminant analysis (OPLS-DA) and odor activity values (OAVs). Further, eight polyphenols were added to investigate their influences on the aroma quality of HBJ respectively. The results showed that all tested polyphenols could maintain the aroma profile of HBJ closer to FBJ and improve the odor preference of HBJ, among which resveratrol and daidzein were most effective. Their aroma molecular regulatory mechanism involved enhancing the characteristic aroma of bayberry and reducing the certain off-flavored compounds produced by heat sterilization.


Asunto(s)
Myrica , Compuestos Orgánicos Volátiles , Odorantes/análisis , Calor , Polifenoles/análisis , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis , Esterilización , Olfatometría
14.
Foods ; 12(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372636

RESUMEN

Starch nanoparticles (SNPs) are generally defined as starch grains smaller than 600-1000 nm produced from a series of physical, chemical, or biologically modified starches. Many studies have reported the preparation and modification of SNPs, which are mostly based on the traditional "top-down" strategy. The preparation process generally has problems with process complexity, long reaction periods, low yield, high energy consumption, poor repeatability, etc. A "bottom-up" strategy, such as an anti-solvent method, is proven to be suitable for the preparation of SNPs, and they are synthesized with small particle size, good repeatability, a low requirement on equipment, simple operation, and great development potential. The surface of raw starch contains a large amount of hydroxyl and has a high degree of hydrophilicity, while SNP is a potential emulsifier for food and non-food applications.

15.
J Sci Food Agric ; 103(12): 5927-5937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37139663

RESUMEN

BACKGROUND: Nano starch-lutein (NS-L) can be used in three-dimensional (3D) printed functional surimi. However, the lutein release and printing effect are not ideal. The purpose of this study was to facilitate the function and printing properties of surimi by adding the combination of calcium ion (Ca2+ ) and NS-L. RESULTS: Printing properties, lutein release and antioxidation of printed Ca2+ -NS-L-surimi were determined. The NS-L-surimi with 20 mM kg-1 Ca2+ had the best printing effects (fine accuracy, 99 ± 1%). Compared to NS-L-surimi, the structure became denser after adding Ca2+ , the gel strength, hardness, elasticity, yield stress (τ), water holding capacity of Ca2+ -NS-L-surimi increased by about 17 ± 4%, 3 ± 1%, 9 ± 2%, 20 ± 4%, 40 ± 5% respectively. These enhanced mechanical strength and self-supporting ability to resist binding deformation and improve printing accuracy. Moreover, salt dissolution and increased hydrophobic force by Ca2+ stimulated protein stretching and aggregation, leading to enhancement of gel formation. Decreased printing effects of NS-L-surimi with excessive Ca2+ (> 20 mM kg-1 ) caused by excessive gel strength and τ, leading to strong extrusion force and low extrudability. Additionally, Ca2+ -NS-L-surimi had higher digestibility and lutein release rate (increased from 55 ± 2% to 73 ± 3%), because Ca2+ made NS-L-surimi structure porous, which promoted contact of enzyme-protein. Furthermore, weakened ionic bonds reduced electron binding bondage that combined with released lutein to provide more electrons for enhancing antioxidation. CONCLUSION: Collectively, 20 mM kg-1 Ca2+ could better promote printing process and function exertion of NS-L-surimi, facilitating the application of 3D printed functional surimi. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Manipulación de Alimentos/métodos , Luteína , Geles/química , Proteínas de Peces/química , Almidón/química , Impresión Tridimensional
16.
NPJ Sci Food ; 7(1): 17, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149658

RESUMEN

Tissue-like cultured meats of some livestock have successfully been established by different approaches. However, the production of a structure similar to fish fillets is still challenging. Here, we develop tissue-like cultured fish fillets by assembly of large yellow croaker muscle fibers and adipocytes with 3D-printed gel. Inhibition of Tgf-ß and Notch signals significantly promoted myogenic differentiation of piscine satellite cells (PSCs). The mixture of fish gelatin and sodium alginate combined with a p53 inhibitor and a Yap activator supported PSC viability and proliferation. Based on the texture of fish muscle tissue, a 3D scaffold was constructed by gelatin-based gel mixed with PSCs. After proliferation and differentiation, the muscle scaffold was filled with cultured piscine adipocytes. Finally, tissue-like fish fillets with 20 × 12 × 4 mm were formed, consisting of 5.67 × 107 muscles and 4.02 × 107 adipocytes. The biomanufacture of tissue-like cultured fish fillet here could be a promising technology to customize meat production with high fidelity.

17.
Carbohydr Polym ; 311: 120747, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028874

RESUMEN

The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.

18.
Int J Biol Macromol ; 232: 123497, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36736517

RESUMEN

Developing green and efficient methods for the delivery of active food substances is a sustained demand for food scientists and industries. In this work, for the first time, we prepared a curcumin (CUR)-loaded starch-based fast-dissolving nanofiber by electrospinning technology. This green nanofiber was obtained by incorporating CUR with octenyl succinic anhydride starch (OSA) and pullulan (PUL) matrix using pure water as the solvent. To overcome the poor water-solubility and bioavailability of CUR, hydroxypropyl-beta-cyclodextrin (HPßCD) was used to form inclusion complexes. Phase solubility test results showed that by introducing HPßCD, the water-solubility of CUR was obviously improved. The prepared electrospun nanofibers were systematically characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), encapsulation efficiency testing, solubility testing and antioxidant activity testing. The results demonstrated that CUR was well encapsulated into HPßCD and OSA/PUL/CUR-HPßCD electrospun nanofibers with fine morphology and fast-dissolving character were successfully prepared. It is worth noting that the whole process and raw materials were green, suggesting that the prepared fast-dissolving nanofiber has great application potential in the food and pharmaceutical fields.


Asunto(s)
Curcumina , Nanofibras , 2-Hidroxipropil-beta-Ciclodextrina/química , Curcumina/química , Nanofibras/química , Almidón , Espectroscopía Infrarroja por Transformada de Fourier , Solubilidad , Agua/química , Preparaciones Farmacéuticas , Rastreo Diferencial de Calorimetría
19.
J Agric Food Chem ; 70(47): 14919-14930, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36395416

RESUMEN

The starch-phenolics complexes are widely fabricated as functional foods but with low phenolics retention limited by traditional liquid reaction and washing systems. In this study, ferulic acid (FA, 5%) was exogenously used in the crystalline form, and it reacted with starch in a high-solid extrusion environment, which was simultaneously controlled by thermostable α-amylase (0-252 U/g). Moderate enzymolysis (21 or 63 U/g) decreased the degree of the starch double helix and significantly increased the FA retention rate (>80%) with good melting and distribution. Although there were no significantly strong chemical bonds (with only 0.17-2.39% FA bound to starch hydrolysate), the noncovalent interactions, mainly hydrogen bonds, van der Waals forces, and electrostatic interactions, were determined by 1H NMR and molecular dynamics simulation analyses. The phased release of total FA (>50% in the stomach and ∼100% in the intestines) from bioextrudate under in vitro digestion conditions was promoted, which gives a perspective for handing large loads of FA and other phenolics based on starch carrier.


Asunto(s)
Ácidos Cumáricos , Almidón , alfa-Amilasas , Amilasas , Fenoles
20.
Meat Sci ; 194: 108950, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087368

RESUMEN

Beef is easily spoiled, resulting in foodborne illness and high societal costs. This study proposed a novel olfactory visualization system based on colorimetric sensor array and chemometric methods to detect beef freshness. First, twelve color-sensitive materials were immobilized on a hydrophobic platform to acquire scent information of beef samples according to solvatochromic effects. Second, machine vision algorithms were used to extract the scent fingerprints, and principal component analysis (PCA) was employed to compress the feature dimensions of the fingerprints. Finally, four qualitative models, k-nearest neighbor, extreme learning machine, support vector machine (SVM), and random forest, were constructed to evaluate the beef freshness according to the value of total volatile basic nitrogen (TVB-N) and total viable counts (TVC). Results demonstrated that SVM had a preferable prediction ability, with 95.83% and 95.00% precision in the training and prediction sets, respectively. The results revealed that the simple constructed olfactory visualization sensor system could rapidly, robustly, and accurately assess beef freshness.


Asunto(s)
Quimiometría , Colorimetría , Animales , Bovinos , Algoritmos , Nitrógeno/análisis , Bosques Aleatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA