Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125129, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288603

RESUMEN

Selective response is the key index to evaluate the performance of polymeric carbon nitride (PCN)-based heavy metal ion fluorescence sensors. Herein, to explore the role of cyano groups on selectivity, four kinds of PCN, including PCN-Cl, PCN-Ac, PCN-B and PCN-K were prepared by the molten salt method of sodium chloride and sodium acetate, the reduction method of sodium borohydride and the etching method of potassium hydroxide, respectively. These PCNs exhibited different surface cyano characteristics, but all of them had significant blue emission under ultraviolet excitation. It is proved that the assistant of sodium chloride or potassium hydroxide is an effective method to prepare PCNs with abundant surface cyano group. A series of fluorescence quenching experiments of metal ions showed that the cyano-rich degree of PCN is closely related to its selective response to mercury (II) ions. PCN-Cl and PCN-K emerged good selective quenching of mercury (II) ions, which may be related to the soft acid-soft base strong interaction between mercury (II) ions and cyano groups. Both PCN-Cl and PCN-K fluorescent probes for mercury (II) ions had a linear range of 5 âˆ¼ 50 µmol L-1, and PCN-Cl exhibited a lower detection limit of 0.38 µmol L-1. This work confirmed the selective fluorescence response of cyano-rich PCN to mercury (II) ions, proposed the mechanism of selective fluorescence quenching response of mercury (II) ions, and provided a new idea for the design of efficient and accurate PCN-based fluorescence probes.

2.
Acta Pharmacol Sin ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227737

RESUMEN

The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.

3.
Arch Dermatol Res ; 316(8): 607, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240376

RESUMEN

Vitiligo is an acquired autoimmune skin disease characterized by patchy depigmentation of the skin, often accompanied by white hair. The aetiology of vitiligo is complex and difficult to cure, and its disfiguring appearance significantly impacts patients' mental and physical health. Psychological stress is a major factor in inducing and exacerbating vitiligo, as well as affecting its treatment efficacy, though the specific mechanisms remain unclear. Increasing research on the brain-skin axis in skin immunity suggests that psychological stress can influence local skin immunity through this axis, which may play a crucial role in the pathogenesis of vitiligo. This review focuses on the role of brain-skin axis in the pathogenesis of vitiligo, and explores the possible mechanism of brain-skin axis mediating the pathogenesis of vitiligo from the aspects of sympathetic nervous system, hypothalamic-pituitary-adrenal (HPA) axis and hormones and neuropeptides, aiming to provide the necessary theoretical basis for psychological intervention in the prevention and treatment of vitiligo.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Piel , Estrés Psicológico , Vitíligo , Vitíligo/psicología , Vitíligo/terapia , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Estrés Psicológico/inmunología , Estrés Psicológico/psicología , Piel/patología , Piel/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Encéfalo , Sistema Nervioso Simpático/fisiopatología , Neuropéptidos/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39186249

RESUMEN

OBJECTIVES: Neisseria gonorrhoeae strains associated with the high-level ceftriaxone-resistant FC428 clone or containing its main resistance determinant, penA allele 60.001, have shown global transmission. In Hangzhou, China, 10% of the isolates were associated with the FC428 clone in 2019. Here, we investigated ceftriaxone resistance and the prevalence of FC428-associated strains in Hangzhou in 2020-22. METHODS: A total of 209 gonococcal isolates were investigated for antimicrobial susceptibility to ceftriaxone and other antibiotics by agar dilution method. Sequence types and penA alleles were determined by PCR and sequence analysis. RESULTS: Resistance to ceftriaxone (MIC > 0.125 mg/L) was observed for 16% (33/209) of the isolates, whereas 6.7% (14/209) of the isolates displayed high-level ceftriaxone resistance (MIC = 1 mg/L). These 14 high-level ceftriaxone-resistant isolates and another isolate displaying an MIC = 0.25 mg/L contained penA allele 60.001, with eight of these isolates, all from 2020 to 2021 belonging to MLST ST1903, the sequence type commonly associated with the original FC428 clone. Importantly, the six penA allele 60.001-containing isolates from 2022 belonged to MLST ST8123, ST7365 and ST7367, which are among the most frequently encountered sequence types found in China. Therefore, these results indicate that endemic lineages in China have acquired penA allele 60.001. CONCLUSIONS: Here, we report continued transmission of gonococcal strains associated with the FC428 clone or containing penA allele 60.001 in Hangzhou. A major concern for public health is the acquisition of penA allele 60.001 by successful endemic lineages, which might enhance the transmission of this high-level ceftriaxone resistance trait.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38948962

RESUMEN

BACKGROUND: FMX101 4%, as a topical foam formulation of minocycline, has been approved by US Food and Drug Administration for the treatment of moderate-to-severe acne vulgaris (AV). OBJECTIVE: To evaluate the efficacy and safety of FMX101 4% in treating Chinese subjects with moderate-to-severe facial AV. METHODS: This was a multi-centre, randomized, double-blind, vehicle-controlled phase 3 study in Chinese subjects with moderate-to-severe AV. Eligible subjects were randomized 2:1 to receive either FMX101 4% or vehicle foam treatment for 12 weeks. The primary efficacy endpoint was the change in inflammation lesion count (ILC) from baseline at week 12. The key secondary endpoint was the treatment success rate according to Investigator's Global Assessment (IGA) at week 12. RESULTS: In total, 372 subjects were randomized into two groups (FMX101 4% group, n = 248; vehicle group, n = 124). After 12 weeks treatment, the reduction in ILC from baseline was statistically significant in favour of FMX101 4%, compared with vehicle foam (-21.0 [0.08] vs. -12.3 [1.14]; LSM [SE] difference, -8.7 [1.34]; 95% CI [-11.3, -6.0]; p < 0.001). FMX101 4% treatment yielded significantly higher IGA treatment success rate at week 12 as compared to the control treatment (8.06% vs. 0%). Applying FMX101 4% also resulted in significant reduction in noninflammatory lesion count (nILC) versus vehicle foam at week 12 (-19.4 [1.03] vs. -14.9 [1.47]; LSM [SE] difference, -4.5 [1.74]; 95% CI [-8.0, -1.1]; p = 0.009). Most treatment-emergent adverse events (TEAEs) were mild-to-moderate in severity, and no treatment-related treatment-emergent serious adverse event (TESAE) occurred. Thus, FMX101 4% was considered to be a safe and well-tolerated product during the 12-week treatment period. CONCLUSION: FMX101 4% treatment for 12 weeks could lead to significantly reduced ILC and nILC, and improved IGA treatment success rate in Chinese subjects with moderate-to-severe facial AV. It also showed a well acceptable safe and tolerability profile.

6.
Front Microbiol ; 15: 1391558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846565

RESUMEN

Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.

7.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745965

RESUMEN

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

8.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592766

RESUMEN

α-Linolenic acid (ALA) is an important nutrient component in rapeseed oil, and rapeseed breeders want to either restrain or enhance the function of fatty acid desaturases (FADs) in the ALA biosynthesis pathway. To determine the reason for the upregulation of rapeseed BnFAD genes in two high-ALA accessions, R8Q10 and YH25005, we compared their transcriptome profiles in the seed at 24 days after pollination (DAP) with those of two low-ALA lines, A28 and SW. The expression levels of twenty-eight important genes in the seed samples at 20, 27, and 34 DAP were also investigated using an RT-qPCR. The expression levels of genes involved in flavonoid and proanthocyanidin synthesis, including BnCHS, BnCHI, BnDFR, BnFLS1, BnLDOX, BnBAN, BnTT10, and BnTT12 and genes encoding the transcription factors BnTT1, BnTT2, BnTT8, and BnTT16 were lower in R8Q10 and YH25005 than in A28 and SW. The expression levels of genes encoding master transcription factors in embryo development, such as BnLEC1, BnABI3, BnFUS3, BnL1L, BnAREB3, and BnbZIP67, were elevated significantly in the two high-ALA accessions. Combined with previous results in the Arabidopsis and rapeseed literature, we speculated that the yellow-seededness genes could elevate the activity of BnLEC1, BnABI3, BnFUS3, and BnbZIP67, etc., by reducing the expression levels of several transparent testa homologs, resulting in BnFAD3 and BnFAD7 upregulation and the acceleration of ALA synthesis. Yellow-seededness is a favorable factor to promote ALA synthesis in the two high-ALA accessions with the yellow-seeded trait. These findings provide initial insights into the transcriptomic differences between high-/low-ALA germplasms and a theoretic basis for seed quality breeding.

9.
Tissue Eng Regen Med ; 21(4): 609-624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568409

RESUMEN

BACKGROUND: Hepatic fibrosis (HF) is a common pathological feature of chronic hepatic diseases. We aimed to illuminate the significance of amniotic mesenchymal stem cells (AMSCs)-derived extracellular vesicles (AMSCs-EVs) in HF. METHODS: Human AMSCs-EVs were isolated and identified. HF mice were constructed and treated with EVs. The fibrosis was observed by staining experiments and Western blot (WB) assay. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and hepatic hydroxyproline (Hyp) were detected to confirm liver function. For the in vitro experiments, human hepatic stellate cells were induced with transforming growth factor-ß and treated with EVs. To measure the degree of HF, the expression of alpha-smooth muscle actin (α-SMA) and Collagen I was detected by WB assay, and cell proliferation was detected by cell counting kit 8 assay. The levels of miR-200a, Zinc finger E-box binding homeobox 1 (ZEB1), and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) were detected by WB and real-time quantitative polymerase chain reaction. The binding of ZEB1 to PIK3R3 and miR-200a to ZEB1 was analyzed by chromatin immunoprecipitation and dual luciferase assays to validate their relationships. RESULTS: Human AMSCs and AMSCs-EVs were obtained. Serum ALT, AST, TBIL, and hepatic Hyp were increased, implying the fibrosis degree was aggravated in HF mice, which was decreased again after EV treatment. EVs inhibited HF degree by reducing α-SMA and Collagen I and promoting cell proliferation. AMSCs-EVs delivered miR-200a into hepatocytes, which up-regulated miR-200a expression, inhibited ZEB1 expression, and reduced its enrichment on the PIK3R3 promoter, therefore inhibiting PIK3R3 expression and alleviating HF. Overexpression of ZEB1 or PIK3R3 attenuated the anti-fibrotic effect of AMSCs-EVs. CONCLUSION: Human AMSCs-derived EVs mediated miR-200a delivery and inhibition of intracellular ZEB1/PIK3R3 axis to exert anti-fibrosis effects.


Asunto(s)
Vesículas Extracelulares , Cirrosis Hepática , Células Madre Mesenquimatosas , MicroARNs , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Ratones , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proliferación Celular , Masculino , Ratones Endogámicos C57BL
10.
Clin Cosmet Investig Dermatol ; 17: 339-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327549

RESUMEN

Background and Aim: There is a dearth of scholarly investigation pertaining to the effectiveness and safety of laser therapy for nevus of Ota manifestation in infants. The objective of this study is to examine the efficacy and safety of administering laser therapy at an early stage to treat nevus of Ota in infants. Methods: A total of 102 infants below the age of one who had nevus of Ota were treated at the Laser Center at Hangzhou Third People's Hospital. The treatment approach involved a combination of the Q-switched laser (with a wavelength of 755 nm) and the Q-switched laser (with a wavelength of 1064 nm). The treatment sessions were conducted at six-month intervals. Prior to and after each session, photographs and relevant parameters were documented, including any skin reactions. Subsequent follow-up was conducted through phone calls, WeChat, and text messages, and the parents/guardians of the infants completed a general questionnaire as well as Conner's Abbreviated Symptom Questionnaire. Results: Laser therapy exhibited significant efficacy in the treatment of nevus of Ota in infants. Success rates reached 88.7% after four sessions and 99.3% after seven sessions. No instances of serious adverse reactions, except for pain, were reported. Among the 47 infants subject to follow-up, 14 experienced a recurrence, resulting in a recurrence rate of 29.8%. Factors contributing to these recurrences included lesion size, subtypes, exposure to the sun, and location. Subsequent laser treatments, typically involving two to three additional sessions, proved effective in mitigating recurrences. Notably, none of the infants exhibited any signs of fear, anxiety, or other psychological abnormalities following laser therapy, and the overall satisfaction rate was markedly high. Conclusion: Commencing laser therapy promptly for nevus of Ota in infants is recommended. This early intervention significantly contributes to the overall well-being of infants, addressing both physical and psychological aspects.

11.
Nat Commun ; 15(1): 1669, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396029

RESUMEN

The bacterial pathogen Neisseria gonorrhoeae is able to invade epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, the mechanistic details for interactions between gonococcal OMVs and epithelial cells and their impact on intracellular survival are currently not established. Here, we show that gonococcal OMVs induce epithelial cell mitophagy to reduce mitochondrial secretion of reactive oxygen species (ROS) and enhance intracellular survival. We demonstrate that OMVs deliver PorB to mitochondria to dissipate the mitochondrial membrane potential, resulting in mitophagy induction through a conventional PINK1 and OPTN/NDP52 mechanism. Furthermore, PorB directly recruits the E3 ubiquitin ligase RNF213, which decorates PorB lysine residue 171 with K63-linked polyubiquitin to induce mitophagy in a p62-dependent manner. These results demonstrate a mechanism in which polyubiquitination of a bacterial virulence factor that targets mitochondria directs mitophagy processes to this organelle to prevent its secretion of deleterious ROS.


Asunto(s)
Gonorrea , Mitofagia , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Gonorrea/microbiología , Células Epiteliales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/metabolismo
15.
Microbiol Spectr ; 11(6): e0244923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982635

RESUMEN

IMPORTANCE: Ceftriaxone-based antimicrobial therapies for gonorrhea are threatened by waning ceftriaxone susceptibility levels and the global dissemination of the high-level ceftriaxone-resistant gonococcal FC428 clone. Combination therapy can be an effective strategy to restrain the development of ceftriaxone resistance, and for that purpose, it is important to find an alternative antimicrobial to replace azithromycin, which has recently been removed in some countries from the recommended ceftriaxone plus azithromycin dual-antimicrobial therapy. Ideally, the second antimicrobial should display synergistic activity with ceftriaxone. We hypothesized that bacitracin might display synergistic activity with ceftriaxone because of their distinct mechanisms targeting bacterial cell wall synthesis. In this study, we showed that bacitracin indeed displays synergistic activity with ceftriaxone against Neisseria gonorrhoeae. Importantly, strains associated with the FC428 clone appeared to be particularly susceptible to the bacitracin plus ceftriaxone combination, which might therefore be an interesting dual therapy for further in vivo testing.


Asunto(s)
Ceftriaxona , Gonorrea , Humanos , Ceftriaxona/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina , Bacitracina/farmacología , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae , Farmacorresistencia Bacteriana
16.
J Infect Dis ; 228(12): 1776-1788, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37926090

RESUMEN

Neisseria gonorrhoeae establishes tight interactions with mucosal epithelia through activity of its type IV pilus, while pilus retraction forces activate autophagic responses toward invading gonococci. Here we studied pilus-independent epithelial cell responses and showed that pilus-negative gonococci residing in early and late endosomes are detected and targeted by nucleotide-binding oligomerization domain 1 (NOD1). NOD1 subsequently forms a complex with immunity-related guanosine triphosphatase M (IRGM) and autophagy-related 16-like 1 (ATG16L1) to activate autophagy and recruit microtubule-associated protein light chain 3 (LC3) to the intracellular bacteria. IRGM furthermore directly recruits syntaxin 17 (STX17), which is able to form tethering complexes with the lysosome. Importantly, IRGM-STX17 interactions are enhanced by LC3 but were still observed at lower levels in an LC3 knockout cell line. These findings demonstrate key roles for NOD1 and IRGM in the sensing of intracellular N gonorrhoeae and subsequent directing of the bacterium to the lysosome for degradation.


Asunto(s)
Autofagia , Neisseria gonorrhoeae , Neisseria gonorrhoeae/metabolismo , Células Epiteliales/metabolismo , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Endosomas/metabolismo
17.
Biomol Biomed ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37902450

RESUMEN

Mitochondrial dysfunction is an important pathogenic factor in non-alcoholic fatty liver disease (NAFLD). Methyltransferase-like 14 (METTL14) has been implicated in mitochondrial fission processes. This research aimed to investigate the mechanism of METTL14 in the mitochondrial function of NAFLD. We first established NAFLD mouse models and cell models, recording body and liver weights and examining pathological changes in liver tissues. Subsequently, serum levels of liver function indices (aspartate aminotransferase [AST], alanine aminotransferase [ALT], total cholesterol [TC], and triglycerides [TG]), inflammatory markers (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6, and IL-1ß), and mitochondrial dysfunction indicators (fission 1 protein [Fis1], dynamin-related protein 1 [Drp1], mitofusin 2 [Mfn2], SID1 transmembrane family member 2 [SIDT2], and mitochondrial membrane potential [MMP]) in the liver and cells were evaluated. The N6-methyladenosine (m6A) modification level of primary microRNA (pri-miRNA) and m6A enrichment on pri-miR-34a were quantified. Co-immunoprecipitation and dual-luciferase reporter gene assays were utilized to validate gene interactions. Our findings revealed highly elevated METTL14 expression in NAFLD mouse and cell models. Silencing METTL14 reduced weight gain and mitigated adverse liver function indices, inflammation, hepatic steatosis, and structural damage in NAFLD mice. It also led to a decrease in Fis1/Drp1 levels and an increase in MMP/Mfn2 in the liver and cells. Moreover, METTL14 increased the m6A level, promoting the binding of DiGeorge syndrome critical region 8 (DGCR8) to pri-miR-34a, which enhanced miR-34a-5p expression. Databases and dual-luciferase reporter gene assays indicated that miR-34a-5p could suppress SIDT2 expression. The overexpression of miR-34a-5p or inhibition of SIDT2 expression negated the alleviative effects of METTL14 silencing on mitochondrial homeostasis imbalance. In conclusion, METTL14, through m6A modification, modulates the miR-34a-5p/SIDT2 axis, impairing mitochondrial homeostasis in NAFLD.

18.
PLoS One ; 18(9): e0291717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708155

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0181014.].

19.
Infect Drug Resist ; 16: 5941-5951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700800

RESUMEN

Purpose: This study aims to compare drug resistance and detection efficacy across different Mycobacterium tuberculosis lineages, offering insights for precise treatment and molecular diagnosis. Methods: 161 strains of Mycobacterium tuberculosis (M.tb) were tested for drug resistance using Phenotypic Drug Susceptibility Testing (pDST), High-Resolution Melting analysis (HRM), and Whole Genome Sequencing (WGS) methods. The main focus was on evaluating the accuracy of different methods for detecting resistance to rifampicin (RIF), isoniazid (INH), and streptomycin (SM). Results: Among the 161 strains of M.tb, 83.85% (135/161) were fully sensitive to RIF, INH, and SM according to pDST, and the rate of multidrug resistance was 4.35% (7/161). The drug resistance rates of lineage 2 M.tb to the three drugs (26/219, 11.87%) were significantly higher than those of non-lineage 2 M.tb (12/264, 4.45%) (P<0.05). Compared with pDST, WGS had a sensitivity of 100%, 94.12%, and 92.31% and a specificity of 100%, 99.31%, and 98.65% for RIF, INH, and SM, respectively, with no significant difference. The sensitivity of HRM for RIF, INH, and SM was 87.50%, 52.94%, and 76.92%, respectively, while the specificity was 96.08%, 99.31%, and 99.32%, respectively. The sensitivity of HRM for detecting INH resistance was significantly lower than that of pDST (P=0.039). Compared with HRM, WGS increased the sensitivity of RIF, INH, and SM by 12.50%, 41.18%, and 15.38%, respectively. Conclusion: There are significant differences in drug resistance rates among different lineages of M.tb, with lineage 2 having higher rates of RIF, INH, and SM resistance than lineages 3 and 4. The sensitivity of HRM is far lower than that of pDST, and currently, the accuracy of HRM is not sufficient to replace pDST. WGS has no significant difference in detecting drug resistance compared with pDST but can identify new anti-tuberculosis drug-resistant mutations, providing effective guidance for clinical decision-making.

20.
Mol Med ; 29(1): 125, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710183

RESUMEN

BACKGROUND: Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), although the specific underlying mechanisms remain largely unknown. This study aimed to clarify the role and possible mechanism of acid sphingomyelinase (ASM)-mediated osteoblast ferroptosis in T2DOP. METHODS: We treated hFob1.19 cells with normal glucose (NG) and different concentrations of high glucose (HG, 26.25 mM, 35 mM, or 43.75 mM) for 48 h. We then measured cell viability and osteogenic function, quantified ferroptosis and autophagy levels, and measured the levels of ASM and ceramide in the cells. To further investigate the specific mechanism, we examined these indicators by knocking down ASM expression, hydroxychloroquine (HCQ) treatment, or N-acetylcysteine (NAC) treatment. Moreover, a T2DOP rat model was induced and microcomputed tomography was used to observe the bone microstructure. We also evaluated the serum levels of iron metabolism-associated factors, ceramide and lipid peroxidation (LPO) and measured the expression of ASM, LC3 and GPX4 in bone tissues. RESULTS: HG inhibited the viability and osteogenic function of osteoblasts by inducing ferroptosis in a concentration-dependent manner. Furthermore, the expression of ASM and ceramide and autophagy levels were increased by HG treatment, and these factors were required for the HG-induced reactive oxygen species (ROS) generation and LPO. Similarly, inhibiting intracellular ROS also reduced HG-induced ASM activation and autophagy. ASM-mediated activation of autophagy was crucial for HG-induced degradation of GPX4, and inhibiting ASM improved osteogenic function by decreasing HG-induced autophagy, GPX4 degradation, LPO and subsequent ferroptosis. We also found that inhibiting ASM could alleviated ferroptosis and autophagy and improved osteogenic function in a T2DOP rat model. CONCLUSION: ASM-mediated autophagy activation induces osteoblast ferroptosis under HG conditions through the degradation of GPX4, providing a novel mechanistic insight into the treatment and prevention of T2DOP.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ferroptosis , Osteoporosis , Animales , Ratas , Autofagia , Ceramidas , Glucosa , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Especies Reactivas de Oxígeno , Esfingomielina Fosfodiesterasa/genética , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA