Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 13903-13913, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721817

RESUMEN

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.


Asunto(s)
Materiales Biocompatibles , Ácido Cítrico , Geles , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ácido Cítrico/química , Geles/química , Carnitina/química , Líquidos Iónicos/química , Resistencia a la Tracción , Adhesivos/química
2.
Adv Mater ; 36(25): e2313845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452373

RESUMEN

The resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch-induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13-33 MPa), strain (3000-5300%), and toughness (390.9-765.1 MJ m-3). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10-3 to 24 S m-1 when stretched to 4200% strain, representing a 6000-fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water-induced recycling.

3.
Adv Mater ; 36(7): e2308547, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37816506

RESUMEN

Solvent-free elastomers, unlike gels, do not suffer from solvent evaporation and leakage in practical applications. However, it is challenging to realize the preparation of high-toughness (with both high stress and strain) ionic elastomers. Herein, high-toughness linear poly(ionic liquid) (PIL) elastomers are constructed via supramolecular ionic networks formed by the polymerization of halometallate ionic liquid (IL) monomers, without any chemical crosslinking. The obtained linear PIL elastomers exhibit high strength (16.5 MPa), Young's modulus (157.49 MPa), toughness (130.31 MJ m-3 ), and high crack propagation insensitivity (fracture energy 243.37 kJ m-2 ), owing to the enhanced intermolecular noncovalent interactions of PIL chains. Furthermore, PIL elastomer-based strain, pressure, and touch sensors have shown high sensitivity. The linear noncovalent crosslinked network endows the PIL elastomers with self-healing and recyclable properties, and broad application prospects in the fields of flexible sensor devices, health monitoring, and human-machine interaction.

4.
Angew Chem Int Ed Engl ; 63(1): e202316375, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37997003

RESUMEN

Service life and range of polymer materials is heavily reliant on their elasticity and mechanical stability under long-term loading. Slippage of chain segments under load leads to significant hysteresis of the hydrogels, limiting its repeatability and mechanical stability. Achieving the desired elasticity exceeding that of rubber is a great challenge for hydrogels, particularly when subjected to large deformations. Here, low-hysteresis and high-toughness hydrogels were developed through controllable interactions of porous cationic polymers (PCPs) with adjustable counteranions, including reversible bonding of PCP frameworks/polymer segments (polyacrylamide, PAAm) and counteranions/PAAm. This strategy reduces chain segment slippage under load, endowing the PCP-based hydrogels (PCP-gels) with good elasticity under large deformations (7 % hysteresis at a strain ratio of 40). Furthermore, due to the enlarged chain segments entanglement by PCP, the PCP-gels exhibit large strain (13000 %), significantly enhanced toughness (68 MJ m-3 ), high fracture energy (43.1 kJ m-2 ), and fatigue resistance. The unique properties of these elastic PCP-gels have promising applications in the field of flexible sensors.

5.
Adv Mater ; 36(13): e2311214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150638

RESUMEN

With the continuous development of impact protection materials, lightweight, high-impact resistance, flexibility, and controllable toughness are required. Here, tough and impact-resistant poly(ionic liquid) (PIL)/poly(hydroxyethyl acrylate) (PHEA) double-network (DN) elastomers are constructed via multiple cross-linking of polymer networks and cation-π interactions of PIL chains. Benefiting from the strong noncovalent cohesion achieved by the cation-π interactions in PIL chains, the prepared PIL DN elastomers exhibit extraordinary compressive strength (95.24 ± 2.49 MPa) and toughness (55.98 ± 0.66 MJ m-3) under high-velocity impact load (5000 s-1). The synthesized PIL DN elastomer combines strength and flexibility to protect fragile items from impact. This strategy provides a new research idea in the field of the next generation of safety and protective materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA