Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Commun ; 15(1): 7291, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181885

RESUMEN

Tandem repeats (TRs) are genomic regions that tandemly change in repeat number, which are often multiallelic. Their characteristics and contributions to gene expression and quantitative traits in rice are largely unknown. Here, we survey rice TR variations based on 231 genome assemblies and the rice pan-genome graph. We identify 227,391 multiallelic TR loci, including 54,416 TR variations that are absent from the Nipponbare reference genome. Only 1/3 TR variations show strong linkage with nearby bi-allelic variants (SNPs, Indels and PAVs). Using 193 panicle and 202 leaf transcriptomic data, we reveal 485 and 511 TRs act as QTLs independently of other bi-allelic variations to nearby gene expression, respectively. Using plant height and grain width as examples, we identify and validate TRs contributions to rice agronomic trait variations. These findings would enhance our understanding of the functions of multiallelic variants and facilitate rice molecular breeding.


Asunto(s)
Alelos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza , Sitios de Carácter Cuantitativo , Secuencias Repetidas en Tándem , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Secuencias Repetidas en Tándem/genética , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Fenotipo , Variación Genética
2.
Plant Commun ; 5(1): 100673, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37596786

RESUMEN

Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.


Asunto(s)
Oryza , Oryza/metabolismo , Redes Reguladoras de Genes , Grano Comestible/genética , Grano Comestible/metabolismo , Transducción de Señal , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo
3.
Plant Biotechnol J ; 22(4): 915-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37983630

RESUMEN

Grain weight is an important determinant of grain yield. However, the underlying regulatory mechanisms for grain size remain to be fully elucidated. Here, we identify a rice mutant grain weight 9 (gw9), which exhibits larger and heavier grains due to excessive cell proliferation and expansion in spikelet hull. GW9 encodes a nucleus-localized protein containing both C2H2 zinc finger (C2H2-ZnF) and VRN2-EMF2-FIS2-SUZ12 (VEFS) domains, serving as a negative regulator of grain size and weight. Interestingly, the non-frameshift mutations in C2H2-ZnF domain result in increased plant height and larger grain size, whereas frameshift mutations in both C2H2-ZnF and VEFS domains lead to dwarf and malformed spikelet. These observations indicated the dual functions of GW9 in regulating grain size and floral organ identity through the C2H2-ZnF and VEFS domains, respectively. Further investigation revealed the interaction between GW9 and the E3 ubiquitin ligase protein GW2, with GW9 being the target of ubiquitination by GW2. Genetic analyses suggest that GW9 and GW2 function in a coordinated pathway controlling grain size and weight. Our findings provide a novel insight into the functional role of GW9 in the regulation of grain size and weight, offering potential molecular strategies for improving rice yield.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Ubiquitinación , Regulación de la Expresión Génica de las Plantas/genética
4.
Mol Plant ; 16(11): 1811-1831, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37794682

RESUMEN

Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.


Asunto(s)
Oryza , Oryza/metabolismo , Lactonas/metabolismo , Fósforo/metabolismo , Fosfatos/metabolismo , Transducción de Señal , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738159

RESUMEN

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Biol Sci ; 19(4): 1110-1122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923932

RESUMEN

Inflammation and metabolic reprogramming are hallmarks of cancer. How inflammation regulates cancer metabolism remains poorly understood. In this study, we found that 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL), the enzyme that catalyzes the catabolism of leucine and promotes the synthesis of ketone bodies, was downregulated in lung cancer. Downregulation of HMGCL was associated with a larger tumor size and a shorter overall survival time. In a functional study, overexpression of HMGCL increased the content of ß-hydroxybutyrate (ß-HB) and inhibited the tumorigenicity of lung cancer cells, and deletion of HMGCL promoted de novo tumorigenesis in KP (KrasG12D;P53f/f) mice. Mechanistically, tumor necrosis factor α (TNFα) treatment decreased the HMGCL protein level, and IKKß interacted with HMGCL and phosphorylated it at Ser258, which destabilized HMGCL. Moreover, NEDD4 was identified as the E3 ligase for HMGCL and promoted its degradation. In addition, mutation of Ser258 to alanine inhibited the ubiquitination of HMGCL by NEDD4 and thus inhibited the anchorage-independent growth of lung cancer cells more efficiently than did wild-type HMGCL. In summary, this study demonstrated a link between TNFα-mediated inflammation and cancer metabolism.


Asunto(s)
Neoplasias Pulmonares , Liasas , Animales , Ratones , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inflamación/genética , Neoplasias Pulmonares/genética , Liasas/genética , Liasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
J Integr Plant Biol ; 65(7): 1651-1669, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36920174

RESUMEN

Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine 8 of histone H4) for drought tolerance in rice. In this study, we show that plants overexpressing HDA704 (HDA704-OE) are resistant to drought stress and sensitive to abscisic acid (ABA), whereas HDA704 knockout mutant (hda704) plants displayed decreased drought tolerance and ABA sensitivity. Transcriptome analysis revealed that HDA704 regulates the expression of ABA-related genes in response to drought stress. Moreover, HDA704 was recruited by a drought-resistant transcription factor, WAX SYNTHESIS REGULATORY 2 (OsWR2), and co-regulated the expression of the ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), NCED4, and NCED5 under drought stress. HDA704 also repressed the expression of ABA-INSENSITIVE 5 (OsABI5) and DWARF AND SMALL SEED 1 (OsDSS1) by regulating H4K8ac levels in the promoter regions in response to polyethylene glycol 6000 treatment. In agreement, the loss of OsABI5 function increased resistance to dehydration stress in rice. Our results demonstrate that HDA704 is a positive regulator of the drought stress response and offers avenues for improving drought resistance in rice.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Sequías , Ácido Abscísico/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768347

RESUMEN

Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the largest cut flowers in the world. Phosphate transporter Pht1 family member CmPht1;2 protein (CmPT2) plays an important role in response to low-phosphate (LP) stress in chrysanthemum. Post-translational modification (PTM) can modulate the function of proteins in multiple ways. Here, we used yeast and rice systems to study the role of putative PTM in CmPT2 by determining the effect of mutation of key amino acid residues of putative glycosylation, phosphorylation, and myristoylation sites. We chose nine amino acid residues in the putative PTM sites and mutated them to alanine (A) (Cmphts). CmPT2 recovered the growth of yeast strain MB192 under LP conditions. However, G84A, G222A, T239A, Y242A, and N422A mutants could not grow normally under LP conditions. Analysis of phosphorus absorption kinetics showed that the Km of CmPT2 was 65.7 µM. Among the nine Cmphts, the expression of five with larger Km (124.4-397.5 µM) than CmPT2 was further evaluated in rice. Overexpression of CmPT2-OE increased plant height, effective panicle numbers, branch numbers, and yield compared with that of wild type 'Wuyunjing No. 7' (W7). Overexpression of Cmphts-OE led to decreased plant height and effective panicle numbers compared with that of the CmPT2-OE strain. The Pi content in roots of CmPT2-OE was higher than that of the W7 under both high (normal) phosphate (HP) and LP conditions. However, the Pi content in the leaves and roots was significantly lower in the N422A-OE strain than in the CmPT2-OE strain under both HP and LP conditions. Under LP conditions, the phosphorus starvation response (PSR) genes in CmPT2-OE were inhibited at the transcription level. The expression patterns of phosphorus-related genes in T239A, Y242A, and N422A-OE under LP conditions were different from those of CmPT2-OE. In conclusion, these five post-translational modification residues of CmPT2 play key roles in modulating the function of CmPT2. This work boosters our understanding of the function of phosphate transporters and provides genetic resources for improving the efficiency of phosphorus utilization in crop plants.


Asunto(s)
Proteínas Fúngicas , Oryza , Proteínas de Plantas , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
Plant Physiol ; 191(1): 280-298, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36102807

RESUMEN

Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.


Asunto(s)
Actinas , Oryza , Actinas/metabolismo , Oryza/metabolismo , Forminas/genética , Forminas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas
10.
Respir Med ; 205: 107035, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343504

RESUMEN

Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Macrófagos Alveolares , Pulmón
11.
Cell Res ; 32(10): 878-896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35821092

RESUMEN

Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture of various rice species.


Asunto(s)
Oryza , Domesticación , Genoma de Planta , Genómica , Leucina/genética , Nucleótidos , Oryza/genética
12.
Theor Appl Genet ; 135(5): 1751-1766, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35258682

RESUMEN

Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.


Asunto(s)
Brasinoesteroides , Oryza , Brasinoesteroides/farmacología , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Cinesinas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Sci China Life Sci ; 65(2): 398-411, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34251582

RESUMEN

High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two "golden quality" rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the "golden quality" rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.


Asunto(s)
Genoma de Planta/genética , Oryza/genética , Mapeo Cromosómico , Genes de Plantas , Tamaño del Genoma , Variación Estructural del Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Secuenciación de Nanoporos , Fitomejoramiento , Análisis de Secuencia de ADN
14.
Sci Rep ; 11(1): 5060, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658526

RESUMEN

The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) gene family encodes a large number of polypeptide signaling molecules involved in the regulation of shoot apical meristem division and root and vascular bundle development in a variety of plants. CLE family genes encode important short peptide hormones; however, the functions of these signaling polypeptides in cotton remain largely unknown. In the current work, we studied the effects of the CLE family genes on growth and development in cotton. Based on the presence of a conserved CLE motif of 13 amino acids, 93 genes were characterized as GhCLE gene family members, and these were subcategorized into 7 groups. A preliminary analysis of the cotton CLE gene family indicated that the activity of its members tends to be conserved in terms of both the 13-residue conserved domain at the C-terminus and their subcellular localization pattern. Among the 14 tested genes, the ectopic overexpression of GhCLE5::GFP partially mimicked the phenotype of the clv3 mutant in Arabidopsis. GhCLE5 could affect the endogenous CLV3 in binding to the receptor complex, comprised of CLV1, CLV2, and CRN, in the yeast two-hybrid assay and split-luciferase assay. Silencing GhCLE5 in cotton caused a short seedling phenotype. Therefore, we concluded that the cotton GhCLE gene family is functionally conserved in apical shoot development regulation. These results indicate that CLE also plays roles in cotton development as a short peptide hormone.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Gossypium/crecimiento & desarrollo , Gossypium/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Desarrollo de la Planta/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Gossypium/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Espacio Intracelular/metabolismo , Meristema/genética , Meristema/metabolismo , Fenotipo , Plantones/genética , Plantones/metabolismo
15.
Plant Cell Physiol ; 62(4): 624-640, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33561287

RESUMEN

Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.


Asunto(s)
Adaptación Biológica/genética , Hierro/toxicidad , Oryza/genética , Proteínas de Plantas/genética , Adaptación Biológica/efectos de los fármacos , Productos Agrícolas/genética , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , India , Hierro/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
17.
Open Med (Wars) ; 16(1): 104-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506107

RESUMEN

BACKGROUND: The aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC. METHODS: The protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS: We discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities. CONCLUSION: Circ_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.

18.
Plant Cell ; 32(9): 2780-2805, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32665307

RESUMEN

Seedling emergence in monocots depends mainly on mesocotyl elongation, requiring coordination between developmental signals and environmental stimuli. Strigolactones (SLs) and karrikins are butenolide compounds that regulate various developmental processes; both are able to negatively regulate rice (Oryza sativa) mesocotyl elongation in the dark. Here, we report that a karrikin signaling complex, DWARF14-LIKE (D14L)-DWARF3 (D3)-O. sativa SUPPRESSOR OF MAX2 1 (OsSMAX1) mediates the regulation of rice mesocotyl elongation in the dark. We demonstrate that D14L recognizes the karrikin signal and recruits the SCFD3 ubiquitin ligase for the ubiquitination and degradation of OsSMAX1, mirroring the SL-induced and D14- and D3-dependent ubiquitination and degradation of D53. Overexpression of OsSMAX1 promoted mesocotyl elongation in the dark, whereas knockout of OsSMAX1 suppressed the elongated-mesocotyl phenotypes of d14l and d3 OsSMAX1 localizes to the nucleus and interacts with TOPLESS-RELATED PROTEINs, regulating downstream gene expression. Moreover, we showed that the GR24 enantiomers GR245DS and GR24 ent-5DS specifically inhibit mesocotyl elongation and regulate downstream gene expression in a D14- and D14L-dependent manner, respectively. Our work revealed that karrikin and SL signaling play parallel and additive roles in modulating downstream gene expression and negatively regulating mesocotyl elongation in the dark.


Asunto(s)
Furanos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Piranos/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos/química , Lactonas/química , Oryza/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , Estereoisomerismo , Ubiquitinación
19.
BMC Biol ; 18(1): 73, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591023

RESUMEN

BACKGROUND: Copy number variations (CNVs) are an important type of structural variations in the genome that usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires development of additional tools. RESULTS: Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and gene expression levels and found that approximately 13% of the identified genes showed a significant correlation between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the parent copy tended to maintain the function of ancestral gene. CONCLUSION: We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear. Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene fates, shedding a new insight into the evolution of duplicated genes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Evolución Molecular , Duplicación de Gen , Genes de Plantas , Oryza/genética , Genoma de Planta , Transcriptoma
20.
Nature ; 583(7815): 277-281, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32528176

RESUMEN

Plant hormones known as strigolactones control plant development and interactions between host plants and symbiotic fungi or parasitic weeds1-4. In Arabidopsis thaliana and rice, the proteins DWARF14 (D14), MORE AXILLARY GROWTH 2 (MAX2), SUPPRESSOR OF MAX2-LIKE 6, 7 and 8 (SMXL6, SMXL7 and SMXL8) and their orthologues form a complex upon strigolactone perception and play a central part in strigolactone signalling5-10. However, whether and how strigolactones activate downstream transcription remains largely unknown. Here we use a synthetic strigolactone to identify 401 strigolactone-responsive genes in Arabidopsis, and show that these plant hormones regulate shoot branching, leaf shape and anthocyanin accumulation mainly through transcriptional activation of the BRANCHED 1, TCP DOMAIN PROTEIN 1 and PRODUCTION OF ANTHOCYANIN PIGMENT 1 genes. We find that SMXL6 targets 729 genes in the Arabidopsis genome and represses the transcription of SMXL6, SMXL7 and SMXL8 by binding directly to their promoters, showing that SMXL6 serves as an autoregulated transcription factor to maintain the homeostasis of strigolactone signalling. These findings reveal an unanticipated mechanism through which a transcriptional repressor of hormone signalling can directly recognize DNA and regulate transcription in higher plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Transcripción Genética , Antocianinas/biosíntesis , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas/genética , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA