Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
China Pharmacy ; (12): 1863-1868, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-979938

RESUMEN

OBJECTIVE To investigate the inhibitory effect of berberine (BER) on the invasion and migration of human renal carcinoma cells and its potential mechanism. METHODS Using human renal carcinoma OSRC-2 cell as object, alamarBlue assay was adopted to detect the inhibitory effects of 0 (control group), 25, 50, 75, 100, 125, 150, 175 and 200 μmol/L BER on the proliferation of OSRC-2 cell after treatment for 24 h and 48 h. After treated with 0(control group), 50, 100 μmol/L BER for 48 h, the effect of BER on cell cycle was analyzed by flow cytometry. The migration of OSRC-2 cells in 24 h and 36 h was observed by cell scratch test, and the invasion ability of OSRC-2 cells in 24 h was detected by Transwell assay. The protein expression of methyltransferase-like 3 (METTL3) was detected by Western blot after treatment for 48 h, and RNA methylation quantification kit was used to detect the levels of N6-methyladenosine (m6A) in OSRC-2 cells. RESULTS Compared with control group, BER at different concentrations could significantly decrease the survival rate of OSRC-2 cells (P<0.01), and showed a dose-dependent and time-dependent manner. After 48 h of BER treatment at 50, 100 μmol/L, the cell was arrested in G0/G1 phase (P<0.01). Compared with control group, the migration and invasion abilities of cells in 50, 100 μmol/L BER group were significantly decreased (P<0.05 or P<0.01); the protein expression of METTL3 and the level of m6A in RNA were significantly decreased (P<0.01). CONCLUSIONS BER can inhibit level of m6A by down-regulating the expression of METTL3, thereby inhibiting the invasion and metastasis of human renal carcinoma cells.

2.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1027337

RESUMEN

Objective:To investigate the effects of ultra-high dose rate radiation (FLASH-RT) and conventional radiation (CONV-RT) on plasma metabolites in glioma mice.Methods:Tocally 21 male C57BL/6J mice bearing intracranial glioma xenograft were randomly divided into healthy control group ( n=3), CONV-RT group ( n=9) and FLASH-RT group ( n=9). The CONV-RT group was administered a single dose of 24 Gy radiation on the head of mice at a dose rate of 0.4 Gy/s, and the FLASH-RT group was administered a single dose of 24 Gy radiation on the head of mice at a dose rate of 60 Gy/s, and the healthy control group was given 0 Gy pseudoradiation under the same condition. Mice blood was collected through the inner canthus vein for plasma separation at 1, 3 and 7 d after radiation in the two radiation groups, and the blood plasma of healthy control group was collected at 7 days after sham radiation. The changes in plasma metabolites were detected by the non-targeted metabolomics based on liquid chromatography mass spectrometry tandem platform. Results:After irradiation, the metabolites in plasma of two irradiation groups had significant difference. Compared with the healthy control group, 12 and 5 differential metabolites were screened out in the FLASH-RT group and CONV-RT group at three time points, respectively. The difference of plasma metabolites had the largest value at 1 day and decreased at 3 and 7 d after radiation. The arachidonic acid and isovaleric acid, involving arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, and tyrosine metabolism pathways were screened in both FLASH-RT group and CONV-RT group, and the 10 differential metabolites, mainly involving energy metabolism and redox reactions, only existed in the FLASH-RT group.Conclusions:Arachidonic acid and isovaleric acid may be the common sensitive biomarkers to different radiation patterns, which provides ideas for further exploring the molecular mechanism of FLASH-RT in the treatment of glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA