Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474855

RESUMEN

Since SARS-CoV-2 Omicron variant (B.1.1.529) was reported in November 2021, it has quickly spread to many countries and outcompeted the globally dominant Delta variant in several countries. The Omicron variant contains the largest number of mutations to date, with 32 mutations located at spike (S) glycoprotein, which raised great concern for its enhanced viral fitness and immune escape[1-4]. In this study, we reported the crystal structure of the receptor binding domain (RBD) of Omicron variant S glycoprotein bound to human ACE2 at a resolution of 2.6 [A]. Structural comparison, molecular dynamics simulation and binding free energy calculation collectively identified four key mutations (S477N, G496S, Q498R and N501Y) for the enhanced binding of ACE2 by the Omicron RBD compared to the WT RBD. Representative states of the WT and Omicron RBD-ACE2 systems were identified by Markov State Model, which provides a dynamic explanation for the enhanced binding of Omicron RBD. The effects of the mutations in the RBD for antibody recognition were analyzed, especially for the S371L/S373P/S375F substitutions significantly changing the local conformation of the residing loop to deactivate several class IV neutralizing antibodies.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474273

RESUMEN

The Omicron variant of SARS-CoV-2 has rapidly become the dominant infective strain and the focus efforts against the ongoing COVID-19 pandemic. Here we report an extensive set of structures of the Omicron spike trimer by its own or in complex with ACE2 and an anti-Omicron antibody. These structures reveal that most Omicron mutations are located on the surface of the spike protein, which confer stronger ACE2 binding by nearly 10 folds but become inactive epitopes resistant to many therapeutic antibodies. Importantly, both RBD and the closed conformation of the Omicron spike trimer are thermodynamically unstable, with the melting temperature of the Omicron RBD decreased by as much as 7{degrees}C, making the spiker trimer prone to random open conformations. An unusual RBD-RBD interaction in the ACE2-spike complex unique to Omicron is observed to support the open conformation and ACE2 binding, serving the basis for the higher infectivity of Omicron. A broad-spectrum therapeutic antibody JMB2002, which has completed Phase 1 clinical trial, is found to interact with the same two RBDs to inhibit ACE2 binding, in a mode that is distinguished from all previous antibodies, thus providing the structural basis for the potent inhibition of Omicron by this antibody. Together with biochemical data, our structures provide crucial insights into higher infectivity, antibody evasion and inhibition of Omicron.

3.
Acta Pharmaceutica Sinica B ; (6): 1355-1361, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-881204

RESUMEN

The recent discovery of activator compounds binding to an allosteric site on the NAD

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA