Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46619-46633, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163636

RESUMEN

Thermal rectification (TR) efficiency has always been an important concern for thermal rectifiers. However, in practical terms, the amount of heat conduction is equally not negligible. To get high values on both of them, the carbon nanotube arrays with high thermal conductivity and large heat conduction areas were considered, along with carbon/boron nitride heteronanotubes (CBNNTs) with excellent TR property. In our work, multiple CBNNT models are constructed, and the TR ratio under different conditions is investigated using nonequilibrium molecular dynamics, with double CBNNTs (D-CBNNTs) aligned in parallel as the main analytical object. It is shown that weakening the intertube coupling is an available way to enhance the TR ratio, and adjusting the heteronanotube length and spacing can also effectively regulate the TR. In the process of changing the coupling coefficient, we analyzed both phonon changes and atomic vibrations and got a good correspondence, and the BN region is more variable in D-CBNNTs. In addition, the covariation of phonon localization and intertube phonon exchange with the coupling coefficient results in an invariant backward heat flux in the D-CBNNT. Furthermore, by adjusting the carbon proportion and lowering the coupling coefficient in the model, an excellent TR ratio in four CBNNTs was obtained and its heat flux is even larger than the value at a carbon percentage of 50% in larger coupling. We fully utilized the phonon density of states, phonon participation rate, and mean square displacement. Our results demonstrate the possibility of multiple CBNNTs as thermal rectifiers and provide theoretical guidance for heteronanotube arrays to be applied.

2.
Phys Chem Chem Phys ; 26(32): 21727-21738, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099465

RESUMEN

Carbon/C3N heteronanotubes (CC3NNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CC3NNTs through the bonding of CNTs and C3NNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects. Placing the heat source in the CNT region induces a stronger heat flux compared to the C3NNT region, thus demonstrating a pronounced TR effect. This effect can be attributed to the mismatch in phonon spectra, as evidenced by the cumulative correlation factor derived from the phonon density of states (phonon DOS). Using this approach, we predict that the TR ratio for zigzag CC3NNTs (ZCC3NNT) significantly exceeds that of armchair CC3NNTs (ACC3NNT). Notably, in contrast to ACC3NNT, ZCC3NNT exhibits the phenomenon of negative differential thermal resistance in the backward heat flux with a temperature difference of Δ = 120 K. This phenomenon can be attributed to a lower phonon participation ratio at Δ = 120 K compared to other values of Δ. Subsequently, given that ZCC3NNT demonstrates the most pronounced TR ratio at room temperature, we explored how stress-strain, system size, defect density, and interface position impact the TR ratio. These insights are invaluable for guiding the design of thermal rectifiers, smart thermal management systems, and microelectronic processor coolers.

3.
J Phys Chem B ; 128(28): 6892-6906, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38956953

RESUMEN

One-dimensional van der Waals (vdWs) heterostructures are celebrated for their exceptional thermal management capabilities, garnering significant research interest. Consequently, our research focused on the one-dimensional vdWs heterojunction comprising carbon nanotube half-wrapped in boron nitride nanotube (BNCNT), specifically their thermal rectification (TR) properties. We employed non-equilibrium molecular dynamics to explore the TR mechanism and assess the impacts of temperature, strain, and coupling strength on heat flux and TR ratio. Our findings reveal that the backward heat flux demonstrates greater atomic vibration instability, as indicated by mean square displacement (MSD), compared to forward heat flux. This instability leads to a higher concentration of localized phonons, thereby diminishing the backward heat flux and enhancing TR. Additionally, we utilized MSD to shed light on the negative differential thermal resistance phenomenon and the influence of stress on forward and backward heat fluxes. Remarkably, TR ratios reached 344% at 3% strain and 400% at -1% strain. Calculations of phonon density of states revealed a competitive mechanism between in-plane and out-of-plane phonons coupling in the inner carbon nanotube and an overlap degree of out-of-plane phonon spectra between the inner carbon nanotube and outer boron nitride nanotube. This accounts for the differing trends in forward and backward heat fluxes as coupling strength χ increases, with TR ratios exceeding 1000% at χ = 7.5. This study provides vital insights for advancing one-dimensional vdWs thermal rectifiers.

4.
ACS Appl Mater Interfaces ; 16(32): 42660-42673, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078264

RESUMEN

The weak van der Waals interactions in the out-of-plane direction result in markedly low thermal conductivity in one-dimensional (1D) and two-dimensional (2D) materials, which substantially restricts their applications. Developing three-dimensional (3D) columnar hybrid structures, featuring high thermal conductivity both within and beyond the plane, effectively addresses this challenge. This study investigated a 3D hybrid structure composed of graphene and boron nitride nanotubes (GR-BNNTs) using non-equilibrium molecular dynamics simulations. This approach allowed the examination of the formation mechanisms and key factors influencing thermal rectification (TR) in these materials. Our findings reveal a novel mechanism for independently regulating forward and backward heat fluxes in GR-BNNTs. By manipulating the thermal properties of the BNNTs and the graphene layer, the TR ratio can be controlled flexibly. Additionally, we identify specific strategies for independently adjusting the heat flux, such as altering the intercolumn distance of BNNTs, which impacts the backward flux merely, while applying strain to affect the forward flux merely. This research introduces a novel concept of independent regulation of forward and backward heat fluxes, providing significant insights into phonon thermal transport in 3D hybrid structures.

5.
ACS Appl Mater Interfaces ; 16(7): 9155-9168, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324388

RESUMEN

The exceptional thermal conductivity and strength of carbon nanotubes (CNTs) position them as outstanding materials for thermal conduction. The intriguing properties introduced by van der Waals (vdW) heterojunctions have also captured the interest of researchers. However, further refinement of the research concerning the integration of these two elements is required. In our study, a vdW heterostructure with asymmetric layer nesting of multiwalled CNTs (ALCNTs) is devised, with a specific focus on the model's heat flux and thermal rectification (TR) properties, which are analyzed using nonequilibrium molecular dynamics (NEMD). Notably, the greatest TR ratio is observed in the connection of three-layer and single-layer ALCNTs. Moreover, multilayer variable-length nested models exhibit a sluggish TR ratio. An examination of the interface thermal resistance (ITR) reveals that the maximum ITR in the multilayer nested model resides at the rightmost interface. However, it is essential to highlight that the determinant of the TR ratio and heat flux in the multilayer nested model is not the maximum ITR of the rightmost interface but rather the ITR of the outermost layer on the left. Additionally, the impacts of the defect density, length, temperature difference, and hydrogenation on the model's heat flux and TR are explored, yielding noteworthy conclusions. For instance, defects in the outer CNT have a minimal influence on the heat flux and TR compared with those in the inner CNT. As the length increases, the heat flux initially decreases and then increases. Hydrogenation significantly enhances the model's heat flux but does not favor the TR. Our study contributes to advancing the understanding of CNT vdW heterojunctions and offers valuable insights for their practical applications.

6.
Sci Rep ; 14(1): 4040, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369549

RESUMEN

Accurately obtaining accurate information about the future traffic flow of all roads in the transportation network is essential for traffic management and control applications. In order to address the challenges of acquiring dynamic global spatial correlations between transportation links and modeling time dependencies in multi-step prediction, we propose a spatial linear transformer and temporal convolution network (SLTTCN). The model is using spatial linear transformers to aggregate the spatial information of the traffic flow, and bidirectional temporal convolution network to capture the temporal dependency of the traffic flow. The spatial linear transformer effectively reduces the complexity of data calculation and storage while capturing spatial dependence, and the time convolutional network with bidirectional and gate fusion mechanisms avoids the problems of gradient vanishing and high computational cost caused by long time intervals during model training. We conducted extensive experiments using two publicly available large-scale traffic data sets and compared SLTTCN with other baselines. Numerical results show that SLTTCN achieves the best predictive performance in various error measurements. We also performed attention visualization analysis on the spatial linear transformer, verifying its effectiveness in capturing dynamic global spatial dependency.

7.
Opt Lett ; 45(13): 3537-3540, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630892

RESUMEN

High laser damage threshold optical switches and spatial light modulators are in urgent demand in high power laser fields. In this Letter, liquid crystal optical switches using Si-doped GaN and Mg-doped GaN as transparent electrodes are fabricated, and the influence of the conductive properties of GaN is analyzed. The transmission and absorption characteristics of GaN and its sapphire substrate are tested. The results show that the liquid crystal device based on gallium nitride can be expected to play an important role in the fields of visible and near-infrared laser regions with a high laser damage threshold of more than 1J/cm2.

8.
Materials (Basel) ; 11(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261674

RESUMEN

The hydration of different active MgO under an unforced and ultrasonic condition was conducted in this paper to investigate the chemical kinetics model of the apparent reaction and discuss the mechanism combined with the product morphology. The dynamics fitting result shows that both the first-order and multi-rate model describe the hydration process under ultrasound well, while only the multi-rate model was right for the hydration process under an unforced condition. It indicated that the rate order of hydration was different in the hydration process under an unforced condition. The XRD and SEM show that the MgO hydration was a process of dissolution and crystallization. Part of the magnesium ions produced by dissolution of MgO did not diffuse into the solution in time, and adhered to the magnesium oxide surface and grew in situ instead. As a result, the difference in the hydration rate of the remaining MgO particles becomes wider and not in the same order (order of magnitude). The ultrasonic cavitation could prevent the in-situ growth of Mg(OH)2 crystal nuclei on the surface of MgO. It not only greatly improved the hydration rate of MgO and produced monodisperse Mg(OH)2 particles, but also made the first-order kinetics model fit the hydration process of MgO well.

9.
Oncol Lett ; 14(5): 5307-5312, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29098027

RESUMEN

In order to improve outcomes after breast cancer treatment, it is essential to understand the mechanisms of action of potential therapeutic agents. The effect of fangchinoline (FAN) on migration and apoptosis of human breast cancer MDA-MB-231 cells and its underlying mechanisms were investigated. MDA-MB-231 cells were treated with different concentrations of FAN, growth inhibition rates were measured by MTT assay and morphological changes of apoptotic cells were observed by Hoechst staining. The wound-healing assay was used to determine of the effect of FAN on the migration of MDA-MB-231 cells. ELISA was used to detect the expression of MMP-2 and -9 in MDA-MB-231 cells treated with different concentrations of FAN and western blot analysis was used to quantify expression of NF-κß and Iκß proteins in the same cells. Our results showed that FAN significantly inhibited the growth of MDA-MB-231 cells in concentration-dependent manner and it induced MDA-MB-231 cell apoptosis. With the high FAN concentrations and long exposure times, the levels of MMP-2 and -9 decreased and the expression of NF-κß decreased, while the expression of Iκß protein increased. Based on these results, the antitumor effects of FAN on breast cancer cells can be explained at least partially by inducing apoptosis and inhibiting the migration of MDA-MB-231 cells.

10.
Phytother Res ; 27(12): 1790-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23401195

RESUMEN

Fangchinoline, an alkaloid derived from the dry roots of Stephaniae tetrandrine S. Moore (Menispermaceae), has been shown to possess cytotoxic, anti-inflammatory, and antioxidant properties. In this study, we used Fangchinoline to inhibit breast cancer cell proliferation and to investigate its underlying molecular mechanisms. Human breast cancer cell lines, MCF-7 and MDA-MB-231, were both used in this study. We found that Fangchinoline significantly decreased cell proliferation in a dose-dependent manner and induced G1-phase arrest in both cell lines. In addition, upon analysis of expression of cell cycle-related proteins, we found that Fangchinoline reduced expression of cyclin D1, cyclin D3, and cyclin E, and increased expression of the cyclin-dependent kinase (CDK) inhibitors, p21/WAF1, and p27/KIP1. Moreover, Fangchinoline also inhibited the kinase activities of CDK2, CDK4, and CDK6. These results suggest that Fangchinoline can inhibit human breast cancer cell proliferation and thus may have potential applications in cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bencilisoquinolinas/farmacología , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Ciclina D3/metabolismo , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Proteínas Oncogénicas/metabolismo
11.
Chem Pharm Bull (Tokyo) ; 59(12): 1476-80, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22130369

RESUMEN

Radix Stephaniae tetrandrae, which contains tetrandrine (Tet) and fangchinoline, is traditionally used as an analgesic, antirheumatic, and antihypertensive drug in China. In this study, we investigated its effect on breast cancer cell proliferation and its potential mechanism of action in vitro. Treatment of cells with fangchinoline significantly inhibited MDA-MB-231 cell proliferation in a concentration- and time-dependent manner. To define the mechanism underlying the antiproliferative effects of fangchinoline, we studied its effects on critical molecular events known to regulate the apoptotic machinery. Specifically, we addressed the potential of fangchinoline to induce apoptosis of breast cancer cells. Fangchinoline induced internucleosomal DNA fragmentation, chromatin condensation, activation of caspases-3, -8, and -9, and cleavage of poly(ADP ribose) polymerase, as well as enhanced mitochondrial cytochrome c release. Furthermore, fangchinoline increased the expression of the proapoptotic protein B cell lymphoma-2 associated X (Bax) and decreased the expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). In addition, the proliferation-inhibitory effect of fangchinoline was associated with decreased levels of phosphorylated Akt. Our results indicate that fangchinoline can inhibit breast cancer cell proliferation by inducing apoptosis via the mitochondrial apoptotic pathway and decreasing phosphorylated Akt. Thus fangchinoline may be a novel agent that can potentially be developed clinically to target human malignancies.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Stephania tetrandra/química , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA