Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1046-1052, 2016 Apr 22.
Artículo en Chino | MEDLINE | ID: mdl-29732758

RESUMEN

A pot experiment including five treatments, i.e., CK (neither fertilizer nor super absorbent polymers), U (urea alone), S [super absorbent polymers (SAP) alone], SUM (SAP mixed with urea) and SUG (gel made of SAP and urea) was conducted to evaluate their effects on fine root morphological characteristics, fine root absorption area, fine root nitrogen metabolism and nitrogen use efficiency of Platycladus orientalis bareroot seedlings. Results showed that compared with U treatment, the SUG treatment significantly increased the biomass, length, specific root length, surface area and volume of fine root. The total absorption area and active absorption area of fine root were also increased remarkably under the SUG treatment. The specific root length in the SUG treatment was increased by 34.7%, 37.9%, 41.1% and 12.4% compared with the treatments of CK, U, S and SUM, respectively. Compared with the U treatment, the activities of nitrate reductase, glutamine synthase, glutamate synthase and glutamate dehydrogenase in fine root of the SUG treatment was improved by 41.2%, 76.6%, 30.7% and 125.8%, respectively, while the ratio of GS to GDH decreased. Not only the ground diameter and plant height, but also the dry matter accumulation of aboveground and underground parts was remarkably enhanced under the SUG treatment. The nitrogen use efficiency was 40.7% in the SUG treatment, being 118.8% and 44.5% higher than the U and SUM treatments, respectively. Gel made of SAP and urea was able to significantly increase the nitrogen use efficiency, promote the growth and enhance the ability of drought resistance by improving the morphological characteristics, enhancing the absorption area and key enzymes activities of nitrogen metabolism in the fine root of P. orientalis bareroot seedlings.


Asunto(s)
Cupressaceae/crecimiento & desarrollo , Nitrógeno/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Urea , Biomasa , Fertilizantes , Geles , Glutamato Deshidrogenasa/metabolismo , Glutamato Sintasa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Nitrato-Reductasa/metabolismo , Polímeros
2.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1475-82, 2014 May.
Artículo en Chino | MEDLINE | ID: mdl-25129951

RESUMEN

Effects of four plant growth-promoting rhizobacteria (PGPR) , namely Pseudomonas sp. YT3, Bacillus subtilis DZ1, B. cereus L90 and B. fusiformis L13 on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought stress were investigated. Results showed that drought stress had little effect on available nutrients of walnut rhizosphere soil, but significantly decreased the activity of organic carbon by 18.4% and increased the pH from 7.34 to 7.79. Under drought stress condition, the inoculation of Bacillus cereus L90 significantly increased high-labile organic carbon in walnut rhizosphere by 14.5% relative to the un-inoculated control, and decreased the pH to 7.41. Compared with the irrigated control, the total microbial populations, root exudates, microbial biomass carbon, and microbial biomass nitrogen in walnut rhizosphere soil were significantly decreased by 36.0%, 20.7%, 33.5% and 30.7%, respectively, because of drought stress. However, L90 inoculation decreased these deficits to 14.1%, 10.3%, 12.1% and 12.7%, respectively. Some terminal restriction fragments (T-RFs) disappeared under the drought condition and PGPR inoculation had great influence on T-RFs according to Terminal Restriction Fragment Length Polymorphism profiles. The Margalef index and the Shannon index of walnut rhizosphere soil significantly decreased, but the Simpson index increased relative to the irrigated control. Compared with the un-inoculated control, the Margalef index significantly increased from 0.42 to 0.99, as well as the Shannon index increased from 0.52 to 0.98. However, the Simpson index de- creased from 0.60 to 0.39. Inoculating YT3, DZ1 and L13 had weaker effects on the biological characteristics of walnut rhizosphere soil compared to inoculating L90, suggesting L90 inoculation could interfere with the suppression of drought stress to the biological characteristics of walnut rhizosphere soil.


Asunto(s)
Sequías , Juglans/microbiología , Rizosfera , Microbiología del Suelo , Bacillus/fisiología , Biomasa , Carbono/análisis , Nitrógeno/análisis , Raíces de Plantas , Pseudomonas/fisiología , Suelo
3.
Ying Yong Sheng Tai Xue Bao ; 24(7): 1809-16, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24175508

RESUMEN

A pot experiment was conducted to study the effects of different water treatments (normal irrigation, light drought, moderate drought, and severe drought) on the growth, gas exchange, chlorophyll fluorescence characteristics, and active oxygen metabolism of poplar ( Populus x euramericana cv. 'Neva') seedlings in the experimental nursery of Shandong Forestry Academy from April to October, 2011. As compared with those under normal irrigation, the growth of the seedling' s basal diameter under light, moderate, and severe drought stress decreased by 12.8%, 44.5%, and 65.6%, and the height growth decreased by 12.2%, 43.1%, and 57.2%, respectively. With the increasing extent and duration of drought stress, the maximal photochemical efficiency of PS II , quantum yield, photochemical quenching coefficient, net photosynthetic rate, and stomatal conductance of the seedling leaves decreased gradually under light drought stress, while decreased rapidly under both moderate and severe drought stress. The non-photochemical quenching coefficient increased significantly under light drought stress, but decreased after an initial increase under moderate and severe drought. The leaf superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities under drought stress decreased after an initial increase, but definite differences existed in the responses of the three enzymes to drought stress and reactive oxygen. The leaf relative electric conductivity and malondialdehyde (MDA) content under drought stress increased significantly, plasma membrane was damaged, and massive ions leaked out. The most serious damage of plasma membrane was found under severe stress. Under light drought stress, the seedlings had higher photosynthetic efficiency and stronger oxidative enzyme defense system; under moderate and severe drought stress, the photosynthetic efficiency decreased significantly, and the oxidative enzyme defense system was damaged remarkably.


Asunto(s)
Sequías , Oxígeno/metabolismo , Fotosíntesis/fisiología , Populus/fisiología , Estrés Fisiológico , China , Populus/metabolismo , Plantones/metabolismo , Plantones/fisiología , Superóxido Dismutasa/metabolismo
4.
Huan Jing Ke Xue ; 31(7): 1619-24, 2010 Jul.
Artículo en Chino | MEDLINE | ID: mdl-20825035

RESUMEN

To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.


Asunto(s)
Fertilizantes , Sustancias Húmicas/análisis , Nitrógeno/análisis , Suelo/química , Contaminación del Agua/prevención & control , Productos Agrícolas/crecimiento & desarrollo , Nitratos/análisis , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA