Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 17(43): e2101359, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34121319

RESUMEN

Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.

2.
Opt Express ; 26(2): A66-A74, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402056

RESUMEN

Solution processed organic-inorganic hybrid perovskites are emerging as a new generation materials for optoelectronics. However, the electroluminescence is highly limited in light emitting diodes (LED) due to the low exciton binding energy and the great challenge in stability. Here, we demonstrate a super air stable quasi-two dimensional perovskite film employing hydrophobic fluorine-containing organics as barrier layers, which can store in ambient for more than 4 months with no change. The dramatically reduced grain size of the perovskite crystal in contrast to three dimensional (3D) perovskites was achieved. Together with the natural quantum well of quasi-two dimensional perovskite confining the excitons to recombination, the LED exhibited the maximum luminance of 1.2 × 103 cd/m2 and current efficiency up to 0.3 cd/A, which is twenty fold enhancement than that of LED based on 3D analogues under the same condition.

3.
J Am Chem Soc ; 132(42): 14803-11, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20882976

RESUMEN

In the present study, quantum dot (QD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2* effect where the r2* relaxivity and r2*/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide. The multiphoton fluorescence imaging and cell uptake of QD capped magnetite NRs are also demonstrated using MGH bladder cancer cells. In particular, these QD capped magnetite NRs can escape from endosomes and be released into the cytoplasm. The obtained results from these exploratory experiments suggest that the cell-penetrating QD capped magnetite NRs could be an excellent dual-modality nanoprobe for intracellular imaging and therapeutic applications. This work has shown great potential of the magnetic vortex core based multifunctional nanoparticle as a high performance nanoprobe for biomedical applications.


Asunto(s)
Óxido Ferrosoférrico , Imagen por Resonancia Magnética/métodos , Nanoestructuras , Puntos Cuánticos , Espectrometría de Fluorescencia/métodos , Humanos , Microscopía Electrónica de Transmisión , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA