Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci. agric. ; 75(4): 273-280, jul.-ago. 2018. ilus, tab, graf
Artículo en Inglés | VETINDEX | ID: vti-728768

RESUMEN

Apple yield estimation using a smartphone with image processing technology offers advantages such as low cost, quick access and simple operation. This article proposes distribution framework consisting of the acquisition of fruit tree images, yield prediction in smarphone client, data processing and model calculation in server client for estimating the potential fruit yield. An image processing method was designed including the core steps of image segmentation with R/B value combined with V value and circle-fitting using curvature analysis. This method enabled four parameters to be obtained, namely, total identified pixel area (TP), fitting circle amount (FC), average radius of the fitting circle (RC) and small polygon pixel area (SP). A individual tree yield estimation model on an ANN (Artificial Neural Network) was developed with three layers, four input parameters, 14 hidden neurons, and one output parameter. The system was used on an experimental Fuji apple (Malus domestica Borkh. cv. Red Fuji) orchard. Twenty-six tree samples were selected from a total of 80 trees according to the multiples of the number three for the establishment model, whereby 21 groups of data were trained and 5 groups o data were validated. The R2 value for the training datasets was 0.996 and the relative root mean squared error (RRMSE) value 0.063. The RRMSE value for the validation dataset was 0.284 Furthermore, a yield map with 80 apple trees was generated, and the space distribution o the yield was identified. It provided appreciable decision support for site-specific management.(AU)


Asunto(s)
Malus/crecimiento & desarrollo , Aplicaciones Móviles , Redes Neurales de la Computación , Predicción/métodos , 24444
2.
Sci. agric ; 75(4)2018.
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1497715

RESUMEN

ABSTRACT: Apple yield estimation using a smartphone with image processing technology offers advantages such as low cost, quick access and simple operation. This article proposes distribution framework consisting of the acquisition of fruit tree images, yield prediction in smarphone client, data processing and model calculation in server client for estimating the potential fruit yield. An image processing method was designed including the core steps of image segmentation with R/B value combined with V value and circle-fitting using curvature analysis. This method enabled four parameters to be obtained, namely, total identified pixel area (TP), fitting circle amount (FC), average radius of the fitting circle (RC) and small polygon pixel area (SP). A individual tree yield estimation model on an ANN (Artificial Neural Network) was developed with three layers, four input parameters, 14 hidden neurons, and one output parameter. The system was used on an experimental Fuji apple (Malus domestica Borkh. cv. Red Fuji) orchard. Twenty-six tree samples were selected from a total of 80 trees according to the multiples of the number three for the establishment model, whereby 21 groups of data were trained and 5 groups o data were validated. The R2 value for the training datasets was 0.996 and the relative root mean squared error (RRMSE) value 0.063. The RRMSE value for the validation dataset was 0.284 Furthermore, a yield map with 80 apple trees was generated, and the space distribution o the yield was identified. It provided appreciable decision support for site-specific management.

3.
Sci. agric. ; 75(4)2018.
Artículo en Inglés | VETINDEX | ID: vti-17996

RESUMEN

ABSTRACT: Apple yield estimation using a smartphone with image processing technology offers advantages such as low cost, quick access and simple operation. This article proposes distribution framework consisting of the acquisition of fruit tree images, yield prediction in smarphone client, data processing and model calculation in server client for estimating the potential fruit yield. An image processing method was designed including the core steps of image segmentation with R/B value combined with V value and circle-fitting using curvature analysis. This method enabled four parameters to be obtained, namely, total identified pixel area (TP), fitting circle amount (FC), average radius of the fitting circle (RC) and small polygon pixel area (SP). A individual tree yield estimation model on an ANN (Artificial Neural Network) was developed with three layers, four input parameters, 14 hidden neurons, and one output parameter. The system was used on an experimental Fuji apple (Malus domestica Borkh. cv. Red Fuji) orchard. Twenty-six tree samples were selected from a total of 80 trees according to the multiples of the number three for the establishment model, whereby 21 groups of data were trained and 5 groups o data were validated. The R2 value for the training datasets was 0.996 and the relative root mean squared error (RRMSE) value 0.063. The RRMSE value for the validation dataset was 0.284 Furthermore, a yield map with 80 apple trees was generated, and the space distribution o the yield was identified. It provided appreciable decision support for site-specific management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA