Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 656-663, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218590

RESUMEN

Stroke is an acute cerebrovascular disease in which sudden interruption of blood supply to the brain or rupture of cerebral blood vessels cause damage to brain cells and consequently impair the patient's motor and cognitive abilities. A novel rehabilitation training model integrating brain-computer interface (BCI) and virtual reality (VR) not only promotes the functional activation of brain networks, but also provides immersive and interesting contextual feedback for patients. In this paper, we designed a hand rehabilitation training system integrating multi-sensory stimulation feedback, BCI and VR, which guides patients' motor imaginations through the tasks of the virtual scene, acquires patients' motor intentions, and then carries out human-computer interactions under the virtual scene. At the same time, haptic feedback is incorporated to further increase the patients' proprioceptive sensations, so as to realize the hand function rehabilitation training based on the multi-sensory stimulation feedback of vision, hearing, and haptic senses. In this study, we compared and analyzed the differences in power spectral density of different frequency bands within the EEG signal data before and after the incorporation of haptic feedback, and found that the motor brain area was significantly activated after the incorporation of haptic feedback, and the power spectral density of the motor brain area was significantly increased in the high gamma frequency band. The results of this study indicate that the rehabilitation training of patients with the VR-BCI hand function enhancement rehabilitation system incorporating multi-sensory stimulation can accelerate the two-way facilitation of sensory and motor conduction pathways, thus accelerating the rehabilitation process.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Mano , Rehabilitación de Accidente Cerebrovascular , Realidad Virtual , Humanos , Mano/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Retroalimentación Sensorial , Interfaz Usuario-Computador , Corteza Motora/fisiología
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 664-672, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218591

RESUMEN

Brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP) have attracted much attention in the field of intelligent robotics. Traditional SSVEP-based BCI systems mostly use synchronized triggers without identifying whether the user is in the control or non-control state, resulting in a system that lacks autonomous control capability. Therefore, this paper proposed a SSVEP asynchronous state recognition method, which constructs an asynchronous state recognition model by fusing multiple time-frequency domain features of electroencephalographic (EEG) signals and combining with a linear discriminant analysis (LDA) to improve the accuracy of SSVEP asynchronous state recognition. Furthermore, addressing the control needs of disabled individuals in multitasking scenarios, a brain-machine fusion system based on SSVEP-BCI asynchronous cooperative control was developed. This system enabled the collaborative control of wearable manipulator and robotic arm, where the robotic arm acts as a "third hand", offering significant advantages in complex environments. The experimental results showed that using the SSVEP asynchronous control algorithm and brain-computer fusion system proposed in this paper could assist users to complete multitasking cooperative operations. The average accuracy of user intent recognition in online control experiments was 93.0%, which provides a theoretical and practical basis for the practical application of the asynchronous SSVEP-BCI system.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Robótica , Potenciales Evocados Visuales/fisiología , Humanos , Robótica/instrumentación , Análisis Discriminante
3.
Cardiovasc Diagn Ther ; 14(4): 509-524, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263473

RESUMEN

Background: Radiation-induced heart disease (RIHD) is a serious complication of thoracic tumor radiotherapy that substantially affects the quality of life of cancer patients. Oxidative stress plays a pivotal role in the occurrence and progression of RIHD, which prompted our investigation of an innovative approach for treating RIHD using antioxidant therapy. Methods: We used 8-week-old male Sprague-Dawley (SD) rats as experimental animals and H9C2 cells as experimental cells. N-acetylcysteine (NAC) was used as an antioxidant to treat H9C2 cells after X-ray irradiation in this study. In the present study, the extent of cardiomyocyte damage caused by X-ray exposure was determined, alterations in oxidation/antioxidation levels were assessed, and changes in the expression of genes related to mitochondria were examined. The degree of myocardial tissue and cell injury was also determined. Dihydroethidium (DHE) staining, reactive oxygen species (ROS) assays, and glutathione (GSH) and manganese superoxide dismutase (Mn-SOD) assays were used to assess cell oxidation/antioxidation. Flow cytometry was used to determine the mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening. High-throughput transcriptome sequencing and bioinformatics analysis were used to elucidate the expression of mitochondria-related genes in myocardial tissue induced by X-ray exposure. Polymerase chain reaction (PCR) was used to verify the expression of differentially expressed genes. Results: X-ray irradiation damaged myocardial tissue and cells, resulting in an imbalance of oxidative and antioxidant substances and mitochondrial damage. NAC treatment increased cell counting kit-8 (CCK-8) levels (P=0.02) and decreased lactate dehydrogenase (LDH) release (P=0.02) in cardiomyocytes. It also reduced the level of ROS (P=0.002) and increased the levels of GSH (P=0.04) and Mn-SOD (P=0.01). The mitochondrial membrane potential was restored (P<0.001), and mPTP opening was inhibited (P<0.001). Transcriptome sequencing and subsequent validation analyses revealed a decrease in the expression of mitochondria-related genes in myocardial tissue induced by X-ray exposure, but antioxidant therapy did not reverse the related DNA damage. Conclusions: Antioxidants mitigated radiation-induced myocardial damage to a certain degree, but these agents did not reverse the associated DNA damage. These findings provide a new direction for future investigations by our research group, including exploring the treatment of RIHD-related DNA damage.

4.
J Anim Ecol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268554

RESUMEN

Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.

6.
ESC Heart Fail ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275894

RESUMEN

BACKGROUND: Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS: HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS: Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS: Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.

7.
BMC Genomics ; 25(1): 773, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118028

RESUMEN

BACKGROUND: Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS: The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS: In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.


Asunto(s)
Especies en Peligro de Extinción , Fritillaria , Genoma Mitocondrial , Filogenia , Plantas Medicinales , Edición de ARN , Fritillaria/genética , Plantas Medicinales/genética , Composición de Base , ARN de Transferencia/genética , Anotación de Secuencia Molecular
8.
Sci Rep ; 14(1): 18454, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117672

RESUMEN

Mental fatigue during long-term motor imagery (MI) may affect intention recognition in MI applications. However, the current research lacks the monitoring of mental fatigue during MI and the definition of robust biomarkers. The present study aims to reveal the effects of mental fatigue on motor imagery recognition at the brain region level and explore biomarkers of mental fatigue. To achieve this, we recruited 10 healthy participants and asked them to complete a long-term motor imagery task involving both right- and left-handed movements. During the experiment, we recorded 32-channel EEG data and carried out a fatigue questionnaire for each participant. As a result, we found that mental fatigue significantly decreased the subjects' motor imagery recognition rate during MI. Additionally the theta power of frontal, central, parietal, and occipital clusters significantly increased after the presence of mental fatigue. Furthermore, the phase synchronization between the central cluster and the frontal and occipital lobes was significantly weakened. To summarize, the theta bands of frontal, central, and parieto-occipital clusters may serve as powerful biomarkers for monitoring mental fatigue during motor imagery. Additionally, changes in functional connectivity between the central cluster and the prefrontal and occipital lobes during motor imagery could be investigated as potential biomarkers.


Asunto(s)
Electroencefalografía , Imaginación , Fatiga Mental , Humanos , Fatiga Mental/fisiopatología , Masculino , Proyectos Piloto , Femenino , Imaginación/fisiología , Adulto , Adulto Joven , Encéfalo/fisiología , Movimiento/fisiología
9.
Eur Biophys J ; 53(5-6): 339-354, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093405

RESUMEN

Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.


Asunto(s)
Cinesinas , Microtúbulos , Modelos Moleculares , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Mutación , Multimerización de Proteína , Humanos , Animales , Drosophila
10.
Sci Total Environ ; 951: 175669, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168317

RESUMEN

Benthivorous fish disturbance and density-dependent competition from adjacent macrophytes are two important biotic factors that significantly impact the growth of submerged macrophyte pioneer species, which is crucial for the success of eutrophication lake restoration. We conducted an outdoor mesocosm experiment to explore the individual and combined effects of these two factors on water quality and the growth of Vallisneria natans. The experiment involved two levels of fish (Misgurnus anguillicaudatus) disturbance crossed with two levels of Hydrilla verticillata vegetative propagule (shoot) intensity. The results showed that fish disturbance significantly increased the water column total nitrogen (TN), ammonia nitrogen (N-NH4), total phosphorus (TP), and phosphate­phosphorus (P-PO4). V. natans exhibited restricted plant height elongation and decreased soluble carbohydrate (SC) and starch concentration in fish treatments. Fish disturbance inhibited the growth advantage of V. natans by increasing the extinction coefficient of the water column. There was no statistical significance in total biomass between the two macrophytes in increased vegetative propagule and fish treatments. H. verticillata exhibited a higher relative growth rate (RGR) and summed dominance ratio (SDR3) than V. natans in four treatments and the treatment with three shoots of H. verticillata and one M anguillicaudatus, respectively. Fish disturbance and vegetative propagules showed cumulative effects that negatively affected the RGR_V.H (V. natans relative to H. verticillata). Our findings indicated that benthivorous fish disturbance and vegetative propagules could individually and cumulatively reduce the growth advantage of the pioneer species, V. natans. Our study sheds light on the accumulated effects of multiple disturbances that simultaneously occur in lakes, which holds theoretical and practical importance for lake restoration efforts.


Asunto(s)
Eutrofización , Hydrocharitaceae , Lagos , Animales , Hydrocharitaceae/fisiología , Hydrocharitaceae/crecimiento & desarrollo , Fósforo , Nitrógeno , Peces/fisiología , Calidad del Agua , China
11.
Turk J Gastroenterol ; 35(4): 316-334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39128058

RESUMEN

BACKGROUND/AIMS:  The S100 family contains more than 20 Ca2+-binding proteins that participate in numerous cellular biological processes. However, the prognostic value of individual S100s in hepatocellular carcinoma (HCC) remains unclear. Therefore, we comprehensively assessed the prognostic value of S100s in HCC. MATERIALS AND METHODS:  The mRNA level of S100s in distinct types of cancer was analyzed through Oncomine. The clinical prognostic significance of each S100 was evaluated using Kaplan-Meier plotter and OncoLnc. The expression and mutation of S100s were determined through cBioPortal. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to predict the functions and pathways of S100s. RESULTS:  The analyses revealed that, relative to normal tissues, liver cancer tissues showed aberrant mRNA expression of most S100s. In the survival analysis with Kaplan-Meier plotter, elevated expression levels of S100PBP, S100A2, S100A7, S100A10, and S100A13 were related to shorter overall survival (OS), whereas increased S100A5 expression was associated with longer OS. Moreover, results obtained using OncoLnc showed that increased expression levels of S100P, S100PBP, S100A13, S100A11, S100A10, and S100A2 were related to shorter OS. Thus, S100PBP, S100A13, S100A10, and S100A2 exhibited the same prognostic trend in the 2 databases. However, all S100 member gene mutational changes had no considerable prognostic value in OS and disease-free survival of HCC patients. CONCLUSION:  Although the findings need to be further confirmed by experiments, they provide new evidence for the prognostic significance of the S100s in HCC.


Asunto(s)
Carcinoma Hepatocelular , Estimación de Kaplan-Meier , Neoplasias Hepáticas , ARN Mensajero , Proteínas S100 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Proteínas S100/genética , Pronóstico , ARN Mensajero/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Mutación , Análisis de Supervivencia
12.
Curr Eye Res ; : 1-9, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206850

RESUMEN

PURPOSE: Diabetic cataract (DC) is a major cause of blindness worldwide. Prion protein (PRNP) was proved to be up-regulated and hypomethylated in DC samples. Here, we investigated whether PRNP was involved in DC progression in N6-methyladenosine (m6A)-dependent manner, and its potential mechanisms. METHODS: Levels of genes and proteins were assayed using qRT-PCR and western blotting. Cell proliferation and apoptosis were determined using Cell Counting Kit-8 assay, 5-thynyl-2'-deoxyuridine (EdU) assay, and flow cytometry, respectively. Oxidative stress was analyzed by measuring the production of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and malondialdehyde (MDA). The m6A modification was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between RBM15 (RNA binding motif protein 15) and PRNP was probed using RIP assay. RESULTS: PRNP was highly expressed in DC patients and HG-induced HLECs. Functionally, PRNP deficiency reversed HG-induced apoptosis and oxidative stress in HLECs. Mechanistically, RBM15 induced PRNP m6A modification and directly bound to PRNP. Knockdown of RBM15 abolished HG-induced apoptotic and oxidative injury in HLECs, while these effects were rescued after PRNP overexpression. CONCLUSION: RBM15 silencing suppressed HG-induced lens epithelial cell injury by regulating PRNP in an m6A-mediated manner, hinting a novel therapeutic strategy for DC patients.

13.
J Food Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150703

RESUMEN

Mesona chinensis Benth (MCB) is the source of the most commonly consumed herbal beverage in Southeast Asia and China and is thus an economically important agricultural plant. Therefore, optimal extraction and production procedures have significant commercial value. Currently, in terms of green chemistry, researchers are investigating the use of greener solvents and innovative extraction techniques to increase extract yields. This study represents the first investigation of the optimal conditions for ultrasound-assisted deep eutectic solvent (DES) extraction from MCB. The major factors influencing ultrasound-assisted DESs were optimized using the response surface methodcentral-genetic algorithm-back propagation neural networks. This model demonstrated superior predictability and accuracy compared to the RSM model. Various types of DESs were used for the extraction of MCB constituents, with choline chloride-ethylene glycol resulting in the highest yield. The optimal conditions for maximal extraction were the use of choline chloride-ethylene glycol (1:4) as the solvent with a 40% water content, an extraction duration of 60 min at 60°C, and maintaining a leaf-to-solvent ratio of 20 mL/g. Noticeable enhancements in Van der Waals forces and more robust interactions between DESs and the target chemicals were observed relative to those seen with ethanol (70%, v/v) or water. This investigation not only introduced an environmentally friendly approach for highly efficient extraction from MCB but also identified the mechanisms underlying the improved extraction efficacy. These findings have the potential to contribute to the broader utilization of MCB and provide valuable insights into the extraction mechanisms utilizing deep eutectic solvents. PRACTICAL APPLICATION: This work describes an efficient and green ultrasound-assisted deep eutectic solvent (DES) method for Mesona chinensis Benth (MCB) extraction. Molecular dynamics was used to examine the intermolecular interactions between the solvent and the extracted compounds. It is anticipated that green and environmentally friendly solvents, such as DESs, will be used in further research on foods and their bioactive components. With the development of the herbal tea industry, new products made of MCB are becoming increasingly popular, thus gradually making it a research hotspot.

14.
Adv Protein Chem Struct Biol ; 141: 87-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960488

RESUMEN

The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.


Asunto(s)
Cinesinas , Microtúbulos , Polimerizacion , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Humanos , Animales
15.
Heliyon ; 10(12): e32913, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988519

RESUMEN

While the regulatory roles of circular RNAs (circRNAs) and zinc finger CCCH-type containing 13 (ZC3H13) were previously reported in various human cancers, the mechanisms underlying their interaction in papillary thyroid cancer (PTC) remain unclear. We aimed to determine the role of hsa_circ_0101050 and its regulatory relationship with ZC3H13 in PTC. The expression levels of hsa_circ_0101050 and ZC3H13 were determined in tumor samples and adjacent normal tissues from 46 patients with PTC and in two PTC cell lines (IHH-4 and PTC-1) using quantitative reverse transcription-polymerase chain reaction. The roles of hsa_circ_0101050 and ZC3H13 in cell viability, wound healing, and migration were determined using knockdown and overexpression approaches in PTC cell lines, and a xenograft model in nude mice was used to determine their role in vivo. Methylated RNA immunoprecipitation assay was used to analyze N6-methyladenosine (m6A) modification of hsa_circ_0101050 by ZC3H13. We found hsa_circ_0101050 overexpression and ZC3H13 downregulation in PTC samples and PTC cell lines. In PTC cell lines, silencing hsa_circ_0101050 reduced cell viability and migration whereas its overexpression promoted an aggressive PTC phenotype. ZC3H13 increased the m6A modification of hsa_circ_0101050 and repressed its expression. ZC3H13 overexpression inhibited PTC cell viability, migration, and invasion, which were reversed in cells overexpressing hsa_circ_0101050. Taken together, these results suggested that the downregulation of hsa_circ_0101050 mediated by ZC3H13 through m6A modification contributed to its oncogenic effect in PTC development, revealing the ZC3H13-m6A-hsa_circ_0101050 as a potential therapeutic target in PTC.

16.
Int Heart J ; 65(4): 730-737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085112

RESUMEN

Sodium tanshinone IIA sulfonate (STS), which is extracted from a Chinese medicinal herb, possesses many pharmacologic functions, such as coronary dilation, anti-inflammatory properties, and antiapoptotic and antioxidant effects. It remains unknown whether STS can protect cardiomyocytes injured after radiation therapy. An in vitro Sprague-Dawley (SD) rat neonatal cardiomyocyte system was established. Primary cardiomyocytes (PCMs) from neonatal SD rats were isolated under sterile conditions. PCM cells were divided into a control group (0 Gy/hour) and 5 experimental radiation therapy groups (0.25 Gy/hour, 0.5 Gy/hour, 1 Gy/hour, 2 Gy/hour, and 4 Gy/hour). Cell viability, the content of malondialdehyde (MDA), the lactate dehydrogenase (LDH) leakage rate, and superoxide dismutase (SOD) and glutathione (GSH) activities were recorded separately in each group after 7 days of culture. Western blot was used to detect the levels of p38, caspase-3 protein, and X protein (BAX) associated with B-cell lymphoma 2 (Bcl-2) in PCMs. X-rays inhibited cell growth, decreased cell viability, and induced an oxidative stress response in PCMs. STS and SB203580 (the inhibitor of P38 mitogen-activated protein kinase pathway) alleviated X-ray-induced damage to PCMs. An enzyme-linked immunosorbent assay showed that X-rays increased the cTnT level. STS and SB203580 ameliorated the X-ray-induced increase in cTnT leakage. X-rays enhanced the expression of p38/p-p38 and caspase-3 while reducing the expression of Bcl-2/BAX in PCMs, as demonstrated by western blotting. STS and SB203580 mitigated the changes in protein expression triggered by X-ray radiation. In conclusions, STS was shown to exert significant cardioprotective, anti-inflammatory, and antioxidant effects in PCMs by inhibiting the p38 mitogen-activated protein kinase pathway.


Asunto(s)
Miocitos Cardíacos , Fenantrenos , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de la radiación , Ratas , Fenantrenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Cultivadas , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antioxidantes/farmacología
17.
Biol Trace Elem Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073733

RESUMEN

HPV is a ubiquitous pathogen implicated in cervical and other cancers. Although vaccines are available, they do not encompass all subtypes. Meanwhile, metal exposure may elevate the risk of HPV infection and amplify its carcinogenic potential, but studies to further elucidate this relationship are insufficient. This study entailed a cross-sectional analysis utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016. The study sample comprised 2765 women. Multivariate logistic regression was employed to examine the association between single metal exposure and HPV infection, weighted quantile sum (WQS) regression was utilized for assessing the mixed metal exposure effect, and the XGBoost + SHapley Additive exPlanations (SHAP) to evaluate the contribution of metal exposure in HPV infection. Multivariate logistic regression analysis indicated that elevated Co concentration was inversely associated with HPV infection (OR 0.891; 95% CI 0.814-0.975), while elevated Pb concentration correlated with an increased HPV infection (OR 1.176; 95% CI 1.074-1.287). Regression analysis of the WQS for mixed metal exposure suggested that the WQS index was potentially linked to an increased likelihood of HPV infection in the positive direction (OR 1.249; 95% CI 1.052-1.482), with no significant association observed in the negative direction (OR 0.852; 95% CI 0.713-1.017). SHAP analysis prioritized the importance of characteristics: number of sexual partners, marital status, poverty-to-income ratio (PIR), Co, Pb, and alcohol consumption. Exposure to Pb was associated with an increase in the incidence of HPV infection, whereas Co exposure demonstrated an inverse relationship. The composite exposure to multiple metals showed a positive association with the prevalence of HPV infection. These findings indicate that exposure to metals could potentially escalate the prevalence of HPV infection.

18.
Am Heart J ; 277: 58-65, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38942221

RESUMEN

BACKGROUND: It is currently uncertain whether the combination of a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor and high-intensity statin treatment can effectively reduce cardiovascular events in patients with acute coronary syndrome (ACS) who have undergone percutaneous coronary intervention (PCI) for culprit lesions. METHODS: This study protocol describes a double-blind, randomized, placebo-controlled, multicenter study aiming to investigate the efficacy and safety of combining a PCSK9 inhibitor with high-intensity statin therapy in patients with ACS following PCI. A total of 1,212 patients with ACS and multiple lesions will be enrolled and randomly assigned to receive either PCSK9 inhibitor plus high-intensity statin therapy or high-intensity statin monotherapy. The randomization process will be stratified by sites, diabetes, initial presentation and use of stable (≥4 weeks) statin treatment at presentation. PCSK 9 inhibitor or its placebo is injected within 4 hours after PCI for the culprit lesion. The primary endpoint is the composite of cardiovascular death, myocardial infarction, stroke, re-hospitalization due to ACS or heart failure, or any ischemia-driven coronary revascularization at 1-year follow-up between 2 groups. Safety endpoints mean PCSK 9 inhibitor and statin intolerance. CONCLUSION: The SHAWN study has been specifically designed to evaluate the effectiveness and safety of adding a PCSK9 inhibitor to high-intensity statin therapy in patients who have experienced ACS following PCI. The primary objective of this study is to generate new evidence regarding the potential benefits of combining a PCSK9 inhibitor with high-intensity statin treatment in reducing cardiovascular events among these patients.


Asunto(s)
Síndrome Coronario Agudo , Quimioterapia Combinada , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores de PCSK9 , Intervención Coronaria Percutánea , Humanos , Síndrome Coronario Agudo/terapia , Intervención Coronaria Percutánea/métodos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Método Doble Ciego , Masculino , Femenino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anciano , Infarto del Miocardio/prevención & control , Infarto del Miocardio/epidemiología , Resultado del Tratamiento , Proproteína Convertasa 9
19.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931754

RESUMEN

Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.


Asunto(s)
Electromiografía , Antebrazo , Gestos , Mano , Reconocimiento de Normas Patrones Automatizadas , Humanos , Electromiografía/métodos , Mano/fisiología , Antebrazo/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Masculino , Adulto , Análisis de Componente Principal , Femenino , Algoritmos , Movimiento/fisiología , Adulto Joven , Máquina de Vectores de Soporte , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA