Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(7): e0052024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920380

RESUMEN

Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.IMPORTANCECultivation is necessary to screen strains to experimentally investigate microbial traits, and to confirm the activities of novel genes through functional characterization studies. In the long-term, such work can aid in the identification of potential health benefits conferred by bacteria and this could aid in the identification of bacterial candidate strains that can be applied as probiotics. In this study, we developed a pipeline with low-cost and user-friendly culture enrichment to reveal the diversity of LAB in giant pandas. We compared the difference between culture-independent and culture enrichment methods, screened strains of interest that produced high concentrations of short-chain fatty acids (SCFAs), and we investigated the catalog of virulence factors, antibiotic resistance, butyrate and lactate synthesis genes of the strains at a genomic level. This study will provide guidance for microbiota cultivation and a foundation for future research aiming to understand the functions of specific strains.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Ursidae , Ursidae/microbiología , Animales , Microbioma Gastrointestinal/genética , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Biodiversidad , Filogenia
2.
J Agric Food Chem ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916838

RESUMEN

Disease represents a major problem in sustainable agricultural development. Plants interact closely with various microorganisms during their development and in response to the prevailing environment. In particular, pathogenic microorganisms can cause plant diseases, affecting the fertility, yield, and longevity of plants. During the long coevolution of plants and their pathogens, plants have evolved both molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) signaling networks in order to regulate host cells in response to pathogen infestation. Additionally, in the postgenomic era, alternative splicing (AS) has become uncovered as one of the major drivers of proteome diversity, and abnormal RNA splicing is closely associated with bacterial infections. Currently, the complexity of host-bacteria interactions is a much studied area of research that has shown steady progress over the past decade. Although the development of high-throughput sequencing technologies and their application in transcriptomes have revolutionized our understanding of AS, many mechanisms related to host-bacteria interactions remain still unclear. To this end, this review summarizes the changes observed in AS during host-bacteria interactions and outlines potential therapeutics for bacterial diseases based on existing studies. In doing so, we hope to provide guidelines for plant disease management in agriculture.

3.
Wiley Interdiscip Rev RNA ; 14(5): e1793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37198737

RESUMEN

Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Asunto(s)
Eucariontes , Virus , Humanos , Animales , Empalme Alternativo , Enfermedades de las Plantas
4.
Mitochondrial DNA B Resour ; 6(9): 2556-2558, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377828

RESUMEN

The Indian Cuckoo, Cuculus micropterus, belongs to the family Cuculidae. In this paper, we sequenced and analysized the complete mitochondrial genome of C. micropterus. The complete mitochondrial genome of C. micropterus is 17,541 bp in length, which was submitted to the NCBI database under the accession number MZ048030. It contains 13 protein-coding genes, 22 transfer RNA genes, two ribosome RNA genes, and one non-coding control region. The overall base composition of the mitochondrial DNA is 33.2% for A, 24.2% for T, 29.8% for C, and 12.8% for G, with a GC content of 42.6%. In order to explore the molecular phylogenetics evolution of Cuculidae, the nucleotide sequence data of 13 PCGs of C. micropterus and other 11 Cuculiformes were used for the phylogenetic analysis. The result shows that C. micropterus is closely related to Cuculus canorus bakeri. The study contributes to illuminating the taxonomic status of C. micropterus, and may facilitate further investigation of the evolution of Cuculidae.

5.
Front Microbiol ; 11: 561381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193147

RESUMEN

BACKGROUND: Frankliniella occidentalis (Thysanoptera: Thripidae) is a highly rasping-sucking pest of numerous crops. The entomogenous fungi of Lecanicillium spp. are important pathogens of insect pests, and some species have been developed as commercial biopesticides. To explore Lecanicillium spp. resources in the development of more effective F. occidentalis controls, efficient barcode combinations for strain identification were screened from internal transcribed spacers (ITS), SSU, LSU, TEF, RPB1, and RPB2 genes. RESULTS: Six genes were used to reconstruct Lecanicillium genus phylogeny. The results showed that ITS, TEF, RPB1, and RPB2 could be used to identify the strains. All phylogenetic trees reconstructed by free combination of these four genes exhibited almost the same topology. Bioassay studies of a purified conidial suspension further confirmed the infection of second-instar nymphs and adult female F. occidentalis by seven Lecanicillium strains. L. attenuatum strain GZUIFR-lun1405 was the most virulent, killing approximately 91.67% F. occidentalis adults and 76.67% nymphs after a 7-day exposure. L. attenuatum strain GZUIFR-lun1405 and L. cauligalbarum strain GZUIFR-ZHJ01 were selected to compare the fungal effects on the number of eggs laid by F. occidentalis. The number of F. occidentalis nymphs significantly decreased when F. occidentalis adults were treated with L. cauligalbarum strain GZUIFR-ZHJ01. CONCLUSIONS: The combination of ITS and RPB1 could be used for fast recognition of Lecanicillium spp. This is the first report of the pathogenicity of L. attenuatum, L. cauligalbarum, L araneogenum, and L. aphanocladii against F. occidentalis. Additionally, L. cauligalbarum strain GZUIFR-ZHJ01 caused high F. occidentalis mortality and inhibited the fecundity of the pest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA