Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 130-139, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142154

RESUMEN

Manufacturing of copper micro-patterns is crucial in electronics for its utilization as high conductivity transparent conductive films (TCFs) and circuits. In the preparation process of current TCFs, a plethora of materials have emerged that can replace traditional indium tin oxide (ITO). However, even for the most promising metal-based nanowire materials, there are issues such as high cost, complex welding, and high contact resistance. To address these problems, this paper proposes a printable and filament-drawable polydimethylsiloxane (PDMS)-based adhesive, which, through a novel additive patterning technology, efficiently and economically manufactures self-welding copper micro-meshes and circuits. The adhesive can be processed into micro-patterns through printing and filament drawing, on which ionic Ag can be in situ reduced and anchored, thereby eliminating the need for tedious pre- and post-treatment steps. The fully exposed Ag particles dramatically minimize the usage of precious metal catalyst, thus efficiently catalyzing electroless copper deposition (ECD) reaction. Highly conductive (1.03 × 107 S m-1) copper circuits can be fabricated on the printed adhesive patterns, exhibiting versatile applicability to diverse substrates. Highly precise copper micro-meshes (∼50 µm) can be fabricated on the filament networks drawn by the adhesive. The copper meshes undergo complete self-welding at junctions during the ECD process, thus exhibiting ultra-low square resistance of 0.45 Ω sq-1 while maintaining a high transmittance of 82.2 %. This is far superior to most of TCFs in published literature.

2.
J Colloid Interface Sci ; 678(Pt A): 63-76, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39180849

RESUMEN

Doping modification is a useful way to promote the catalytic activity of carbon nitride (CN). However, most doped CNs have lower structural symmetry and several edge defects, which hinder the transfer of charge carriers. This work reports a P-doped crystalline carbon nitride (crystalline PCN) for the efficient photoreduction of uranyl. The thermal polymerization and salt post-treatment convert the amorphous PCN into crystalline PCN. Compared to the pristine CN, the crystalline PCN has over 1620 % higher activity for uranyl (U(VI)) reduction, reaching a 97.8 % reduction rate in 60 min. Furthermore, the 2-PCN shows excellent stability and a U(VI) removal efficiency >85.7 % in the pH range of 5-8. Characterization analysis reveal that both the P doping and crystalline modulation do not obviously change their morphology, light absorption property and energy band structure, but markedly promote the delocalization of electrons around the doped P atoms, thereby severely inhibit direct electron-hole recombination. Thus, the more efficient separation of charge carriers generates more reactive specials to participate in the photocatalytic uranyl reduction reaction. This study demonstrates a dual-modification strategy for the rational synthesis of highly active metal-free CN-based photocatalysts for uranyl reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA