Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202741

RESUMEN

There is an increasing clinical need to develop novel biomaterials that combine regenerative and biocidal properties. In this work, we present the preparation of silver/silica-based glassy bioactive (ABG) compositions via a facile, fast (20 h), and low temperature (80 °C) approach and their characterization. The fabrication process included the synthesis of the bioactive glass (BG) particles followed by the surface modification of the bioactive glass with silver nanoparticles. The microstructural features of ABG samples before and after exposure to simulated body fluid (SBF), as well as their ion release behavior during SBF test were evaluated using infrared spectrometry (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), electron microscopies (TEM and SEM) and optical emission spectroscopy (OES). The antibacterial properties of the experimental compositions were tested against Escherichia coli (E. coli). The results indicated that the prepared ABG materials possess antibacterial activity against E. coli, which is directly correlated with the glass surface modification.

2.
Materials (Basel) ; 12(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766736

RESUMEN

In the present work, Ca-containing silicon oxycarbides (SiCaOC) with varying Ca content have been synthesized via sol-gel processing and thermal treatment in inert gas atmosphere (pyrolysis). It has been shown that the as-prepared SiCaOC materials with low Ca loadings (Ca/Si molar ratios = 0.05 or 0.12) were X-ray amorphous; their glassy network contains Q3 sites, indicating the presence of Ca2+ at non-bridging-oxygen sites. SiCaOC with high Ca content (i.e., Ca/Si molar ratio = 0.50) exhibits the presence of crystalline calcium silicate (mainly pseudowollastonite). Furthermore, it has been shown that the incorporation of Ca into the SiOC glassy network has a significant effect on its porosity and specific surface area. Thus, the as-prepared Ca-free SiOC material is shown to be non-porous and having a specific surface area (SSA) of 22.5 m2/g; whereas SiCaOC with Ca/Si molar ratio of 0.05 exhibits mesoporosity and a SSA value of 123.4 m2/g. The further increase of Ca content leads to a decrease of the SSA and the generation of macroporosity in SiCaOC; thus, SiCaOC with Ca/Si molar ratio of 0.12 is macroporous and exhibits a SSA value of 39.5 m2/g. Bioactivity assessment in simulated body fluid (SBF) confirms the hydroxyapatite formation on all SiCaOC samples after seven days soaking, unlike the relatively inert ternary silicon oxycarbide reference. In particular, SiCaOC with a Ca/Si molar ratio of 0.05 shows an increased apatite forming ability compared to that of SiCaOC with Ca/Si molar ratio of 0.12; this difference is considered to be a direct consequence of the significantly higher SSA of the sample with the Ca/Si ratio of 0.05. The present work indicates two effects of Ca incorporation into the silicon oxycarbide glassy network on its bioactivity: Firstly, Ca2+ is shown to contribute to the slight depolymerization of the network, which clearly triggers the hydroxyapatite formation (compare the bioactive behavior of SiOC to that of SiCaOC with Ca/Si molar ratio 0.12 upon SBF exposure); secondly, the Ca2+ incorporation seems to strongly affect the porosity and SSA in the prepared SiCaOC materials. There is an optimum of Ca loading into the silicon oxycarbide glassy network (at a Ca/Si molar ration of 0.05), which provides mesoporosity and reaches maximum SSA, both highly beneficial for the bioactive behavior of the materials. An increase of the Ca loading leads, in addition to the crystallization of calcium silicates, to a coarsening of the pores (i.e., macroporosity) and a significant decrease of the SSA, both negatively affecting the bioactivity.

3.
ACS Biomater Sci Eng ; 5(10): 5337-5347, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33464075

RESUMEN

The bioactivity of Ca and/or B modified silicon oxycarbides has been assessed in vitro upon immersion in SBF (simulated body fluid). In the context of the present work, bioactivity refers to the likeliness of hydroxyapatite crystallization (biomineralization) on the surface of a material when in contact with physiological fluids. The incorporation of Ca and B into the silicon oxycarbide glass network is found to increase its bioactivity, which seems to scale with the content of Ca; thus, SiOC glass with a relatively large Ca/Si molar ratio (i.e., 0.12) is shown to exhibit bioactive characteristics similar to those of the benchmark silicate bioactive glass of 45S5 composition. The release kinetics of the SiOC glasses modified with Ca and/or B during the SBF test was studied by inductively coupled plasma-optical emission spectroscopy. It has been observed that the Si release kinetics can be correlated with the Ca content in the SiOC glasses: SiOC based glasses modified with Ca exhibited low Si release activation energies (i.e., 0.07 eV), being comparable to that of 45S5 bioactive glass (i.e., 0.04 eV); whereas silicon oxycarbides without Ca modification showed higher activation energies for Si release (i.e., 0.27 eV).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA