Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genet. mol. biol ; Genet. mol. biol;40(1): 160-167, Jan.-Mar. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892366

RESUMEN

Abstract The Asian gypsy moth (Lymantria dispar) is a serious pest of forest and shade trees in many Asian and some European countries. However, there have been few studies of L. dispar genetic information and comprehensive genetic analyses of this species are needed in order to understand its genetic and metabolic sensitivities, such as the molting mechanism during larval development. In this study, high-throughput sequencing technology was used to sequence the transcriptome of the Asian subspecies of the gyspy moth, after which a comprehensive analysis of chitin metabolism was undertaken. We generated 37,750,380 high-quality reads and assembled them into contigs. A total of 37,098 unigenes were identified, of which 15,901 were annotated in the NCBI non-redundant protein database and 9,613 were annotated in the Swiss-Prot database. We mapped 4,329 unigenes onto 317 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. Chitin metabolism unigenes were found in the transcriptome and the data indicated that a variety of enzymes was involved in chitin catabolic and biosynthetic pathways.

2.
Genet Mol Biol ; 40(1): 160-167, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27768153

RESUMEN

The Asian gypsy moth (Lymantria dispar) is a serious pest of forest and shade trees in many Asian and some European countries. However, there have been few studies of L. dispar genetic information and comprehensive genetic analyses of this species are needed in order to understand its genetic and metabolic sensitivities, such as the molting mechanism during larval development. In this study, high-throughput sequencing technology was used to sequence the transcriptome of the Asian subspecies of the gyspy moth, after which a comprehensive analysis of chitin metabolism was undertaken. We generated 37,750,380 high-quality reads and assembled them into contigs. A total of 37,098 unigenes were identified, of which 15,901 were annotated in the NCBI non-redundant protein database and 9,613 were annotated in the Swiss-Prot database. We mapped 4,329 unigenes onto 317 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. Chitin metabolism unigenes were found in the transcriptome and the data indicated that a variety of enzymes was involved in chitin catabolic and biosynthetic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA